Smart Client Software Factory Demo Application
Demo Script
	[image:]
	The goal of this demo script is to help presenters give a presentation that illustrates the main aspects of SC-SF such as WorkItems, Commands, EventBroker, Services, Workspaces and the Dependency Injection pattern.
This demo stript provides step-by-step instructions to create a SC-SF application. The application consists of two Business Modules:
· Notifications module: this module populates the Main Menu Strip of the Shell with two items and adds them as invokers of the DumpWorkItem and ShowNews commands respectively. It also adds two views to the Shell.
· Stocks module: this module shows BuyStock and Reports SmartParts in the the Shell.
The Shell is made up of two Workspaces: n OutlookBarWorkspace (the one in the right) and a DockPanelWorkspace (the one in the left). Both Workspaces are available in SCSF Contrib web site.

Key Technologies:
The following technologies are utilized within this demo script:
	Technology / Product
	Version
	

	1. Visual Studio 2008
	RTM
	

	2. .NET Framework
	3.5
	

	3. Smart Client Software Factory
	April 2008
	

	4. SCSFContrib.CompositeUI.WinForms extensions
	1.5
	

Before starting
Create a new folder named temp in the root directory “C:\”. In that folder, the DemoApp will place its log file.
Step-by-step Walkthrough
Estimated time to complete the demo script: 30 minutes.
Use the guidance package to create a new Smart Client Solution
	Action
	Script
	Screenshot

	1. In Visual Studio, point to New on the File menu, and then click Project.
2. In the New Project dialog box, expand the Guidance Packages node. Click the Smart Client Development -April 2008 project type.
3. In the Templates window, click Smart Client Application (C#).
4. Change the Name to DemoApp.
5. (Optional) Change the location for the solution to C:\Projects\DemoApp (this path will be used throughout the whole script).
6. Click OK.
	· Use the guidance package to create a new Smart Client Solution
	[image:]

	7. Enter the location of the Composite UI Application Block, Enterprise Library, and the offline application blocks assemblies. (The wizard sets the default location to the Lib subfolder of the folder where you installed the software factory.)
8. Enter DemoWorkshop as the Root namespace for your application. This value appears as the first part of every namespace in the generated solution.
9. Unselect the option Create a separate module to define the layout for the shell. In this application, you will not use a separate module to define the layout for the shell. Instead, you will define the layout in a view within the Shell project.
10. Unselect the Allow solution to host WPF SmartParts check box. In this application you will develop Windows Forms SmartParts; therefore you do not need support for WPF SmartParts.
11. Select the Show documentation after recipe completes check box. You will see after the recipe completes a summary of the recipe actions and suggested next steps.
12. Click Finish. The recipe unfolds the Smart Client Solution template.
	· The Smart Client Application template references the CreateSolution recipe. The Guidance Automation Extensions calls the CreateSolution recipe when you unfold the template. The CreateSolution recipe starts a wizard to gather information that it uses to customize the generated source code
	[image:]

Add SCSFContrib binaries
	Action
	Script
	Screenshot

	1. Go to the SCSFContrib project page: http://www.codeplex.com/scsfcontrib.
2. In the Source Code tab download the last Change Set that contains the source code of the project.
3. Extract the content from the .zip and compile the project Trunk\src\Extensions\WinForms\SCSFContrib.CompositeUI.WinForms\SCSFContrib.CompositeUI.WinForms.csproj.
4. Copy the SCSFContrib.CompositeUI.WinForms.dll and WeifenLuo.WinFormsUI.Docking.dll assemblies to the Lib folder of your application (C:\Projects\DemoApp\Lib).
	· SCSFContrib is a community-developed library of extensions to the patterns & practices Smart Client Software Factory.
· We are going to use the extensions for WinForms in the application.
	[image:]

	5. In Solution Explorer, right-click the Shell project and select Add Reference…. In the Browse tab, go to the Lib folder of your application (C:\Projects\DemoApp\Lib) and select SCSFContrib.CompositeUI.WinForms.dll, WeifenLuo.WinFormsUI.Docking.dll.
6. Click OK.
	· Add references to the SCSFContrib.CompositeUI.WinForms and WeifenLuo.WinFormsUI.Docking.dll assemblies in the Shell project to be able to use the DockPanelWorkspace and the OutlookBarWorkspace.
	[image:]

Customizing the Shell
	Action
	Script
	Screenshot

	1. Double-click in ShellForm.cs file on the Shell project to open the View Designer.
2. Open the Toolbox.
3. Right-click the Toolbox and select Choose Items. In the .NET Framework Components tab click on Browse and navigate to the Lib folder of your application. Select the SCSFContrib.CompositeUI.WinForms.dll assembly.
4. Click OK.
	· Add the DockPanelWorkspace and the OutlookBarWorkspace to the Toolbox.
· This allows you to drag and drop these controls.
	[image:]

	5. Select the Left and Right DeckWorkspaces and delete them.
6. Drag an OutlookBarWorkspace to the left panel of the SplitContainer.
7. Set its Dock property to Fill and change its Name to _leftWorkspace.
8. Drag a DockPanelWorkspace to the right panel of the SplitContainer.
9. Set its Dock and DocumentStyle properties to Fill and DockingWindow respectively and change its Name to _rightWorkspace.
	· Change the Shell layout. Put an OutlookBarWorkspace on the left and a DockPanelWorkspace on the right.
	[image:]

Add the LoggingService global service
Create the ILoggingService interface
	Action
	Script
	Screenshot

	1. Right-click in the Services folder of Infrastructure.Interface project and point to Add -> New Item….
2. In the Add New Item dialog box, select Interface and enter ILoggingService.cs as the Name of the file.
	· Create an interface for the logging service.
· Locate the interface in the Infrastructure.Interface project so that it is available for all modules.
	[image:]

3. Open the ILoggingService.cs file created in the previous step.
4. Replace the interface definition with the following:
C#
public interface ILoggingService
{
	void Log(string message);
}
Implement the service
	Action
	Script
	Screenshot

	1. Create a Services folder in the Infrastructure.Module project.
2. Right-click the Services folder of the Infrastructure.Module project and point to Add -> Class….
3. In the Add New Item dialog box, select Class and enter LoggingService.cs as the Name of the file.
	· Create the class that represents the logging service.
	[image:]

4. Open the LogginService.cs file created in the previous step.
5. Add the following using statements at the top of the file:
 C#
using DemoWorkshop.Infrastructure.Interface.Services;
using Microsoft.Practices.CompositeUI;
using System.IO;
6. Replace the class definition with the following:
C#
[Service(typeof(ILoggingService))]
public class LoggingService : ILoggingService
{
	#region ILoggingService Members

	public void Log(string message)
	{
		File.AppendAllText("C:\\temp\\log.txt", message);
	}

	#endregion
}
The [Service] attribute indicates to ObjectBuilder that it has to register the logging service in the RootWorkItem. This service will be global and available to all modules.
Add Notifications module
	Action
	Script
	Screenshot

	1. In Solution Explorer, right-click the Source solution folder, point to Smart Client Software Factory, and then click Add Business Module (C#). The Add New Project dialog box appears with the Add Business Module (C#) template selected.
2. Enter Notifications as the Name and set the Location to the Source folder of the solution.
3. Click OK.
	· Add the Notifications Business Module.
· Modules are distinct deployment units of a Composite UI Application Block application. You use modules to encapsulate a set of concerns of your application and deploy them to different users or applications.
· A Business Module has at least one WorkItem (specifically, a ControlledWorkItem) and contains business logic elements. Typically, it includes some combination of services, views, presenters, and business entities.
	[image:]

	4. The guidance package displays the Add Business Module wizard.
5. Unselect the option Create an interface library for this module. If you select this option, the recipe will create an additional project to contain the elements that provide the public interface to the assembly.
6. Unselect the option Create a unit test project for this module. If you select this option, the recipe will create a test project for the module with test classes for your module components.
7. Select the option Show documentation after recipe completes to see a summary of the recipe actions and suggested next steps after the recipe completes.
8. Click Finish.
	· The guidance package will generate a new class library project named Notifications.
· The Module class derives from the CAB class ModuleInit. CAB calls the Load method of this class on startup. The Load method contains code to create and run a new WorkItem. This WorkItem is the module’s main WorkItem.
· The ModuleController class contains methods that you can modify to customize the behavior of the module on startup. You can add services or display user-interface items. The project also contains the following folders:
· The Constants folder contains four classes named CommandNames, EventTopicNames, UIExtensionSiteNames, and WorkspaceNames. You can modify these classes to define module-specific identifiers for your commands, event topics, UIExtensionSites, and Workspaces.
· The Services folder, where you can store the implementation of business services.
· The Views folder, where you can store views.
	[image:]
[image:]

	9. Right-click the Notifications project and point to Add Reference…. In the Browse tab, go to the Lib folder of your application (C:\Projects\DemoApp\Lib) and select SCSFContrib.CompositeUI.WinForms.dll.
10. Click OK.
	· Add a reference to the SCSFContrib.CompositeUI.WinForms.dll assembly.
· This allows you to use the DockPanelSmartPartInfo and the OutlookBarSmartPartInfo and change some features of your views.
	[image:]

Add News view to Notifications module
Using Add View (with presenter)… recipe
	Action
	Script
	Screenshot

	1. In Solution Explorer, right-click the Views folder of the Notifications project, point to Smart Client Software Factory, and then click Add View (with presenter)….
2. In the wizard, enter News in the View Name field and select the Show documentation after recipe completes option to see a summary of the recipe actions and suggested next steps after the recipe completes. If Create a folder for the view is selected, the recipe will create a folder and place the new items in this folder.
3. Click Finish.
	· The recipe generates:
· A view interface. The presenter class uses this interface to communicate with the view. You will modify this interface.
· A view implementation user control. This class derives from UserControl and has the [SmartPart] attribute. The user control also implements the view interface and contains a reference to its presenter. You will modify this class to call the presenter for user-interface actions that affect other views or business logic.
· A presenter class for the view. This class extends the Presenter base class defined in Infrastructure.Interface project and contains the business logic for the view. You will modify this class to update the view for your business logic.
	[image:]

Customizing News view
In the Views folder of the Notifications project, open the INews.cs file.
Paste the following method declaration inside the interface definition:
C#
void ShowNews(string n);
This method will be called from the presenter whenever news has to be displayed to the user.
In the Views folder of the Notifications project, open the NewsPresenter.cs file.
Add the following using statements at the top of the file.
C#
using DemoWorkshop.Infrastructure.Interface.Services;
using Microsoft.Practices.CompositeUI.SmartParts;
Replace the OnViewReady method with the following code.
C#
public override void OnViewReady()
{
	string[] news = { "Some text, some text, some text", "Some text, some text, some text" };
	foreach (string n in news)
	{
		View.ShowNews(n);
	}
	base.OnViewReady();
}
This method will be called when the view is initialized and will populate the view with news.
Add the following two methods to the body of the NewsPresenter class.
C#
private void DisposeView(object smartpart, WorkItem workItem)
{
	if (smartpart is IDisposable) ((IDisposable)smartpart).Dispose();
	workItem.SmartParts.Remove(smartpart);
}

public void ChangeTitle()
{
	IWorkspaceLocatorService locator = WorkItem.Services.Get<IWorkspaceLocatorService>();
	IWorkspace wks = locator.FindContainingWorkspace(WorkItem, View);
	wks.ApplySmartPartInfo(View, new SmartPartInfo("New Title", ""));
}
The ChangeTitle method locates the workspace where the view is showed and applies a new SmartPartInfo with a new title. The DisposeView method disposes the current view if it is disposable.
Add the following line of code at the bottom of the OnCloseView method:
C#
DisposeView(View, WorkItem);
Double-click in the News.cs file in the Views folder of the Notifications project. This will open the Designer.
Set the Size property of control to 349, 200.
Drag a Label to the top of the view. Set its Name to NewsLabel and erase the text in the Text property.
Drag two Buttons to the view surface. Set their Text properties to “Change SmartPartInfo” and “Close View Programatically” respectively. Adjust the size of the buttons to see the text on them.
Double-click on the “Change SmartPartInfo” button to auto-generate the handler of Click event.
Add the following code into the body of the handler.
C#
_presenter.ChangeTitle();
Go back to the Design of the News view and double-click on the “Close View Programatically” button to auto-generate the handler of Click event.
Add the following code into the body of the method.
C#
_presenter.OnCloseView();
Replace the head of the News class with the following:
C#
public partial class News : UserControl, INews, ISmartPartInfoProvider
In this way, the News class implements ISmartPartInfoProvider.
Implement the interfaces INews and ISmartPartInfoProvider. To do this past the following code in the News class body.
C#
#region INews Members

public void ShowNews(string n)
{
	NewsLabel.Text += n + Environment.NewLine;
}

#endregion

#region ISmartPartInfoProvider Members

public ISmartPartInfo GetSmartPartInfo(Type smartPartInfoType)
{
	ISmartPartInfo spi = (ISmartPartInfo)Activator.CreateInstance(smartPartInfoType);
	spi.Title = "Today News";
	return spi;
}

#endregion
Add Alerts view to Notifications module
Using Add View (with presenter)… recipe
	Action
	Script
	Screenshot

	1. In Solution Explorer, right-click the Views folder of the Notifications project, point to Smart Client Software Factory, and then click Add View (with presenter)….
2. In the wizard launched, enter Alerts in the View Name field and select the Show documentation after recipe completes option to see a summary of the recipe actions and suggested next steps after the recipe completes. If Create a folder for the view is selected, the recipe will create a folder and place the new items in this folder.
3. Click Finish.
	· IDEM News view
	[image:]

Customizing Alerts view
1. Open the EventTopicNames.cs file located in the Constants folder of Infrastructure.Interface project.
2. Paste the following code in the body of the EventTopicNames class:
C#
public const string NewStockBuy = "NewStockBuy";
This event topic name will be used in the Notifications and Stocks modules to notify when a new stock is bought.
3. In the Views folder of the Notifications project, open the IAlerts.cs file.
4. Paste the following code inside the interface definition:
C#
void ShowAlerts(string p);
This method will be called from the presenter whenever a new alert has to be displayed to the user.
5. In the Views folder of the Notifications project, open the AlertsPresenter.cs file.
6. Add the following using statements at the top of the file:
C#
using Microsoft.Practices.CompositeUI.EventBroker;
using DemoWorkshop.Notifications.Constants;
7. Paste the following code in the body of AlertsPresenter class.
C#
[EventSubscription(EventTopicNames.NewStockBuy, ThreadOption.UserInterface)]
public void OnNewStockBuy(object sender, EventArgs<string> eventArgs)
{
	View.ShowAlerts("Alert for " + eventArgs.Data);
}
This method is an event handler for the NewStockBuy event. The [EventSubscription] attribute allows you subscribe to an event in a loosely coupled way. In next tasks, you will publish the NewStockBuy event.
8. Double-click the Alerts.cs file in the Views folder of the Notifications project. This will open the Designer.
9. Drag two Labels to the view’s surface and put them at the top-left corner of the view (one below the other).
10. Set the Text property of the first label to Alerts and set also the Bold property of the Font to true.
11. Change the Name of the second label to AlertsLabel and erase the text in its Text property.
12. Right-click onto the view surface and click on View Code.
13. Add the following using statements at the top of the file:
C#
using SCSFContrib.CompositeUI.WinForms.SmartPartInfos;
14. Replace the head of the Alerts class with the following:
C#
public partial class Alerts : UserControl, IAlerts, ISmartPartInfoProvider
In this way, the Alerts class implements ISmartPartInfoProvider.
15. Implement the IAlerts and ISmartPartInfoProvider interfaces. To do this, paste the following code in the Alerts class body.
C#
#region IAlerts Members

public void ShowAlerts(string p)
{
	AlertsLabel.Text += p + Environment.NewLine;
}

#endregion

#region ISmartPartInfoProvider Members

public ISmartPartInfo GetSmartPartInfo(Type smartPartInfoType)
{
	ISmartPartInfo spi = (ISmartPartInfo)Activator.CreateInstance(smartPartInfoType);
	spi.Title = "Alerts";
	if (spi is DockPanelSmartPartInfo)
	{
		((DockPanelSmartPartInfo)spi).DockingType = DockingType.TaskView;
	}
	return spi;
}

#endregion
Showing News and Alerts views in the DockPanelWorkspace
1. Open the ModuleController.cs file located in the root of the Notifications project.
2. Add the following using statements at the top of the file:
C#
using DemoWorkshop.Notifications.Constants;
using System.Diagnostics;
using Microsoft.Practices.CompositeUI.SmartParts;
3. Replace the ExtendMenu method in the ModuleController class with the following one:
C#
private void ExtendMenu()
{
	ToolStripMenuItem menuItem = new ToolStripMenuItem();
	menuItem.Text = "Dump WorkItem";
	WorkItem.UIExtensionSites[UIExtensionSiteNames.MainMenu].Add<ToolStripMenuItem>(menuItem);
	WorkItem.Commands["DumpWorkItem"].AddInvoker(menuItem, "Click");

	ToolStripMenuItem showNewsMenuItem = new ToolStripMenuItem();
	showNewsMenuItem.Text = "Show News";
	WorkItem.UIExtensionSites[UIExtensionSiteNames.MainMenu].Add<ToolStripMenuItem>(showNewsMenuItem);
	WorkItem.Commands["ShowNews"].AddInvoker(showNewsMenuItem, "Click");
}
In the previous code, you’ve added two button as invokers of the commands “DumpWokItem” and “ShowNews”.
4. Paste the following three methods inside the body of ModuleController class:
C#
[CommandHandler("DumpWorkItem")]
public void DumpWorkItem(object sender, EventArgs e)
{
	Debug.WriteLine("SmartParts Count : " + WorkItem.SmartParts.Count);
}

[CommandHandler("ShowNews")]
public void ShowNews(object sender, EventArgs e)
{
	ShowViewInWorkspace<News>(WorkspaceNames.RightWorkspace);
}

private void DisposeView(object smartpart, WorkItem workItem)
{
	if (smartpart is IDisposable) ((IDisposable)smartpart).Dispose();
		workItem.SmartParts.Remove(smartpart);
}
When the “DumpWorkItem” Command is raised, the DumpWorkItem method will be executed. The same occurs for the “ShowNews” command and the ShowNews method.
5. Replace the AddViews method in the ModuleController class with the following one:
C#
private void AddViews()
{
	ShowViewInWorkspace<News>(WorkspaceNames.RightWorkspace);
	ShowViewInWorkspace<Alerts>(WorkspaceNames.RightWorkspace);
	WorkItem.Workspaces[WorkspaceNames.RightWorkspace].SmartPartClosing += new EventHandler<Microsoft.Practices.CompositeUI.SmartParts.WorkspaceCancelEventArgs>(delegate(object workspace, WorkspaceCancelEventArgs e)
	{
		DisposeView(e.SmartPart, WorkItem);
	});
}
Add Stocks module
	Action
	Script
	Screenshot

	1. In Solution Explorer, right-click the Source solution folder, point to Smart Client Software Factory, and then click Add Business Module (C#). The Add New Project dialog box appears with the Add Business Module (C#) template selected.
2. Enter Stocks as the Name and set the Location to the Source folder of the solution.
3. Click OK.
	· IDEM Notifications module.
	[image:]

	4. The guidance package displays the Add Business Module wizard.
5. Unselect the option Create an interface library for this module. If you select this option, the recipe will create an additional project to contain the elements that provide the public interface to the assembly.
6. Unselect the option Create a unit test project for this module. If you select this option, the recipe will create a test project for the module with test classes for your module components.
7. Select the option Show documentation after recipe completes to see a summary of the recipe actions and suggested next steps after the recipe completes.
8. Click Finish.
	· IDEM Notifications module.
	[image:]
[image:]

	9. Right-click the Stocks project and point to Add Reference…. In the Browse tab, go to the Lib folder of your application (C:\Projects\DemoApp\Lib) and select SCSFContrib.CompositeUI.WinForms.dll.
10. Click OK.
	· Add a reference to the SCSFContrib.CompositeUI.WinForms.dll assembly.
· This allows you to use the DockPanelSmartPartInfo and the OutlookBarSmartPartInfo and change some features of your views.
	[image:]

	11. Right click onto the Stocks project and point to Add -> New Item….
12. In the Add New Item dialog box, select the Resources File template and change the Name of the file to Resources.resx, and then drag it to the Properties folder of the Stocks project.
	· Add a resources file where you can place the view icons showed by the OutlookBarWorkspace.
	[image:]

	13. Double click onto the Resourses.resx file to open it.
14. Select Icons in the first dropdown lists.
15. Click in the Add Existing File… in the second dropdown list.
16. In the Add existing file to resources dialog box, navigate to the folder where you have the icons, one for each view, and select them. Click in Open.
17. Rename the resources added previously with the names ReportEdit and Stocks respectively.
	· Add two icons that should be representative of each view.
· You can use the following icons:
	BuyStock view
	[image:]

	Reports view
	[image:]

	[image:]

Add BuyStock view to Stocks module
Using Add View (with presenter)… recipe
	Action
	Script
	Screenshot

	1. In Solution Explorer, right-click the Views folder of the Stocks project, point to Smart Client Software Factory, and then click Add View (with presenter)….
2. In the wizard launched, enter BuyStock in the View Name field and select the Show documentation after recipe completes option to see a summary of the recipe actions and suggested next steps after the recipe completes. If Create a folder for the view is selected, the recipe will create a folder and place the new items in this folder.
3. Click Finish.
	· IDEM News view
	[image:]

Customizing the BuyStock view
1. In the Views folder of the Stocks project, open the IBuyStock.cs file.
2. Paste the declaration of the ShowMessage method inside the interface body:
C#
void ShowMessage(string p);
This method will be called from the presenter when a message has to be shown to the user.
3. In the Views folder of the Stocks project, double-click on the BuyStockPresenter.cs file.
4. Add the following using statements at the top of the file:
C#
using Microsoft.Practices.CompositeUI.EventBroker;
using DemoWorkshop.Stocks.Constants;
using DemoWorkshop.Infrastructure.Interface.Services;
5. Paste the following code inside the body of BuyStockPresenter class.
C#
[EventPublication(EventTopicNames.NewStockBuy, PublicationScope.Global)]
public event EventHandler<EventArgs<string>> NewStockBuy;

private ILoggingService _logger;

[ServiceDependency]
public ILoggingService Logger
{
	get { return _logger; }
	set { _logger = value; }
}
The following code publishes an event using the [EventPublication] attribute of the EventBroker system. It also injects the logging service using the [ServiceDependency] attribute thanks to the dependency injection pattern implemented by ObjectBuilder and CAB.
6. Paste the following methods in the BuyStockPresenter class.
C#
public void BuyStock(string stock)
{
	OnNewStockBuy(new EventArgs<string>(stock));
	Logger.Log("A new stock was bought " + stock + " - ");
	View.ShowMessage("The stock was succesfully bought");
}

protected virtual void OnNewStockBuy(EventArgs<string> eventArgs)
{
	if (NewStockBuy != null)
	{
		NewStockBuy(this, eventArgs);
	}
}
The BuyStock method is called by the view every time the user decides to buy. This method raises the NewStockBuy event, log the transaction using the logging service and show a message to the user in a MessageBox.
7. Double-click the BuyStocks.cs file in the Views folder of the Stock project. This will open the Designer.
8. Change the Size of the user control to 265, 40 from the Properties view.
9. From left to right, drag a Label, a ComboBox and a Button to the view surface.
10. Set the Text property of the label to Select Stock.
11. Set the Anchor property of combo box to Top, Left, Right and add to its Items collection the strings MSFT, UFIDA and etc (one per line) as you can see in the following image:
[image:]
12. Set the Text and Anchor properties of the button to Buy and Top, Right. Double-click on the button surface to auto-generate the handler for Click event.
13. Paste the following code inside the body of the auto-generated method in the previous step:
C#
_presenter.BuyStock(comboBox1.SelectedItem as string);
14. Add the following using statements at the top of the BuyStock.cs file:
C#
using SCSFContrib.CompositeUI.WinForms.Workspaces;
15. Replace the head of the BuyStock class with the following:
C#
public partial class BuyStock : UserControl, IBuyStock, ISmartPartInfoProvider
In this way, the BuyStock class implements ISmartPartInfoProvider.
14. Implement the IBuyStock and ISmartPartInfoProvider interfaces. To do this, paste the following code in the body of the BuyStock class:
C#
#region IBuyStock Members

public void ShowMessage(string p)
{
	MessageBox.Show(p);
}

#endregion

#region ISmartPartInfoProvider Members

public ISmartPartInfo GetSmartPartInfo(Type smartPartInfoType)
{
	ISmartPartInfo spi = (ISmartPartInfo)Activator.CreateInstance(smartPartInfoType);
	spi.Title = "Stocks";
	if (spi is OutlookBarSmartPartInfo)
	{
		((OutlookBarSmartPartInfo)spi).Icon = Properties.Resources.Stocks.ToBitmap();
	}

	return spi;
}

#endregion
Add Reports view to Stocks module
Using Add View (with presenter)… recipe
	Action
	Script
	Screenshot

	1. In Solution Explorer, right-click the Views folder of the Stocks project, point to Smart Client Software Factory, and then click Add View (with presenter)….
2. In the wizard launched, enter Reports in the View Name field and select the Show documentation after recipe completes option to see a summary of the recipe actions and suggested next steps after the recipe completes. If Create a folder for the view is selected, the recipe will create a folder and place the new items in this folder.
3. Click Finish.
	· IDEM News view
	[image:]

Customizing Reports view
1. Right-click onto the Reports.cs file and click on View Code.
2. Add the following using statements at the top of the file:
C#
using SCSFContrib.CompositeUI.WinForms.Workspaces;
3. Replace the head of the Reports class with the following:
C#
public partial class Reports : UserControl, IReports, ISmartPartInfoProvider
In this way, the Reports class implements ISmartPartInfoProvider.
4. Implement the ISmartPartInfoProvider interface. To do this, paste the following methods in the Reports class.
C#
#region ISmartPartInfoProvider Members

public ISmartPartInfo GetSmartPartInfo(Type smartPartInfoType)
{
	ISmartPartInfo spi = (ISmartPartInfo)Activator.CreateInstance(smartPartInfoType);
	spi.Title = "Reports";
	if (spi is OutlookBarSmartPartInfo)
	{
		((OutlookBarSmartPartInfo)spi).Icon = Properties.Resources.ReportEdit.ToBitmap();
	}
	return spi;
}

#endregion
Showing BuyStock and Reports views in the OutlookBarWorkspace
1. Open the ModuleController.cs file located in the root of the Stocks project.
2. Add the following using statements at the top of the file:
C#
using DemoWorkshop.Stocks.Constants;
3. Replace the AddViews method in the ModuleController class with the following one:
C#
private void AddViews()
{
	ShowViewInWorkspace<BuyStock>(WorkspaceNames.LeftWorkspace);
	ShowViewInWorkspace<Reports>(WorkspaceNames.LeftWorkspace);
}
The previous method shows the Stocks module’s views in the OutlookBarWorkspace (the left one, in the Shell).
Compile, run and show the application
	Action
	Script
	Screenshot

	1. Set the Shell project as StartUp Project.
2. Compile and Run the Application (F5).
	· Run the application.
	[image:]

	3. Show the application.
	· The application consists of two Business Modules. Business modules are distinct deployment units of a Composite UI Application Block application that contain business logic elements. SCSF allows loading modules specified in a Profile Catalog file. In this file, you can add different roles for each module.
· You can see the “Dump WorkItem“ and “Show News” buttons in the Main Menu Strip. These items are added when CAB loads the Notification module.
· You can also see two workspaces. An OutlookBarWorkspace on left side and a DockPanelWorkspace on right side. Each workspace shows views in different ways. Workspaces are components that encapsulate a particular visual layout of controls and SmartParts.
· The Notification module loads its two views in the right workspace and the Stocks module in the left one.
	[image:]

	4. Show the right workspace and its SmartParts.
	· Smartparts are data views such as a control, a Windows Form, or a wizard page. In the right workspace you can see two SmartParts: News on the left and Alerts on the right. The DockPanelWorkspace can show SmartParts in two different Docking Types:
· TaskView, like the Alerts view.
· Document, like the News view.
· A SmartPartInfo is a piece of information about a SmartPart that a workspace can use, such as the title of the SmartPart. If we click in the “Change SmartPartInfo” button, the title of the view is changed. That is because when you press that button, the presenter of the view tells the DockPanelWorkspace to apply a new SmartPartInfo.
· Click in the “Close View Programatically” button in the News smartpart. See how the SmartPart is closed by its presenter.
	[image:]

	5. Show the left workspace and its SmartParts.
	· In the left workspace you can see an OutlookBarWorkspace. This workspace allows you switch the views by clicking in the button bellow.
· Also you can click in the little arrow bellow and select the “Show More Buttons” or “Show Fewer Buttons” options if you have to many buttons and you want to hide them.
	[image:]

	6. Show the BuyStock view.
	· Now you can see the Reports view but if I click in the Stocks button you can see the BuyStocks view
· In the Buy Stock view select one option in the combo box (for example MSFT) and then click in “Buy” button.
· You can see a Message Box and the text “Alert for MSFT” in the Alerts view. This is achieved by EventBroker. This system allows you publish and subscribe to events in a loosely coupling way.
· The BuyStock and Alert views are in different modules and they doesn’t have reference each other.
	[image:]

	7. Go to the “C:\temp” directory.
8. Open the “log.txt” file.
9. Show the application log.
	· Every time that the Buy button of the BuyStock view is clicked, the Logging Service is called, which logs the operation in a log file.
· A Service is a supporting class that provides functionality to other components in a loosely coupled way.
· Services are singletons that can be injected using the Dependency Injection pattern and live in the Service collection of WorkItem.
· A WorkItem is a run-time container of the components and services that are collaborating to fulfill a use case.
	[image:]

	10. Show the “Show News” button in the Main Menu Strip.
	· If the “Show News” button in the Main Menu Strip is clicked, a new News view appears in the right Workspace. This is achieved by Commands.
· You can use Command to bind an UIElement event to more than one command handler and a single command handler to multiple UIElements in a loosely coupling way.
	[image:]

	11. Maximize Visual Studio.
12. Restore the DemoApp.
13. Make sure that the Output view of Visual Studio can be seen.
	· When the other button is clicked (the “Dump WorkItem” button), you can see in the Output view of Visual Studio the text “SmartParts Count: 3”. This represents the count of Smartparts that the module’s WorkItem has (views in the left workspace).
· This also executes a Command that can be used to debug our application.
	[image:]

Summary
Now you have minimum knowledge about the main features of SCSF. You can deepen your knowledge by reading the documentation, by doing the Hand-On-Labs and by reviewing the Quickstars and the Reference Implementation.
Useful Links
· Hand-On-Labs
· http://www.codeplex.com/smartclient/Release/ProjectReleases.aspx?ReleaseId=6357
· SC SF Knowledge Base
· http://www.codeplex.com/smartclient/Wiki/View.aspx?title=SCSF%20Knowledge%20Base&referringTitle=Home
· SCSF Community Site
· http://www.codeplex.com/smartclient
· SCSF Contrib
· http://www.codeplex.com/scsfcontrib
image3.jpeg
Creates a new Smart Client Solution

Location of required applcation block assemblis (see st below)

JEProgram Fesiicrosoft smart Clent Factory Apri 20081L,
Root namespace:

Pemovrtshon
Reaured pplcation Hock ssenbles

Mirasoft Practices.Compostell.dl
Mierosoft. Practies. Compositel WinForms.dl
Mirosoft Practices. Objectgulder.di

Mirosoft Practies, CompositeLIL WPF dl

Mirascft Practices.SmartClient. Cornectiontonitar.di
Mirascft Practices SmartClient Discannectedigent. o
Micrasoft Practices SmartClient EndpointCatalog. ol

T~ Create a separate module to define the layout for the shell
T~ Allow solution to host WPF SmartParts.

I Show documentation after recipe completes

< Previots

L | otenprevew

5 1 sowrce
S rasncture
b [——
3 Ifrastructure.Lbrary
5 3 frastnucture Hodde
2] Modde.cs
2] ModdeCortrcler.cs
& shell
) shelipplcaton.cs

2

2|

T el

image4.jpeg
~=lolx|

Ele Edt Yiew Favortes Toos belp

| &

Qosck -) - T | S search [roders | 1% 3 X 9| @

Adress [cprojectsipemosppitib

EE

Name = [siee [Type [Date Modfied [atributes |
[Mcrosoft Pracices. ComposteLLdI 166KE Applcation Extension 16/05/2007 06:05 p.m. A
8] icrosoft. ractices.ComposteL WinForms.di 74KB Applcation Extension 16/05/2007 06:05 p.m. A
[Microsoft. ractices. Compositell WeF. i 70KB Applcation Extension 16/05/2007 06:05 pum. A
[S]icrosoft. ractices EnterpriseLibrary. Commen. i 158K8 Applcation Extension 16/05/2007 05:20 p.m. A
3] icrosoft. ractices EnterpriseLibrary.Data.di 90KB Applcaton Extension 16/05/2007 05:20p.m. A
[S]mcrosoft ractices. EnterpriseLbrary.Data.salce.di 34KB Applcaton Extension 16/05/2007 05:20 p.m. A
(3] Microsoft.Practices. EnterpriseLibrary.ExceptionHanding.di 78KB Application Extension 16/05/2007 05:20 p.m. &
8] icrosoft. ractices EnterpriscLibrary.ExceptionHending.Logging.di 38K8 Application Extension 16/05(2007 05:20 pm.
8] vicrosoft. ractices EnterpriscLibrary.Logging.di 214KB Applcation Extenson 16/05/2007 05:20pm. &
| %) Microsoft Practices. ObjectBuider.dl 63K8 Application Extension 16/05/2007 0S:20 p.m. A
[Microsoft. ractices. SmartClent.Connestiortritor.di 54KB Applcaton Extension 16/05/2007 06:05 pum. A
(3] Microsoft. ractices. SmertClent Disconnestedagent.dl 54KB Applcaton Extension 16/05/2007 06:05 pum. A
| %) Microsoft Practices. SmartClient, EndpointCatalog.dl 34KB Application Extension 16/05/2007 06:05 p.m. A
) icrosoft. ractices. Smrt Clent EnterprieLbrary.dI 46KB Applcaton Extension 16/05/2007 06:05 pum, A
44KB Applcaton Extension 15/10/2007 02:04 pum. A
40BKE Applcation Extension 04/11/2007 10:23 am. &

image5.jpeg
T | con | proets erowse s |

Lookin | 3 Lib o2 cE

[Scrosofe Pracices Eterprisebrary Loggng.a
S icrosof, Pracices.obfectauder.ct

[crosof, Pracces.smarlint ConnctonMonkor.ci
[Slcrosct roctice.SmartClent, Disconnectedagent. ol
[Sicrosofe, Practice.smarlint EndpoitCataba.cl
(8] crosof,Pracicessmarclent Enerpristbrary.cf

Flegane. ['SCOFCont Conpostell WiForms " WeterLuo Wrorms =]

L TR =

ok | cona

image6.jpeg
WantenonceToss | ssispatafowttens | ssisCorolFowttens |
NET FomenorkConperents | comcomponents | Advites |
= e Tt T oo gil
AccossDatasouce | System Web UL WebCortrols System.web (20.0.0) Global s
O Account Microsoft. AnalysisServices. Microsoft. AnalysisServi... Giobal Ass
O Actionspane Microsoft,Offics. Tools Microsoft,Office. Tools... Global Ass
O activiey System.Workflow.Component... System.Workflow.Com... Global Ass.
[AddattributeAction Microsoft Practices.Recipefram... Microsoft Practices.Rec... CilProgral

] AddCodsFromTempla... Microsoft Practices.RecipeFram... Microsoft Practices.Rec... CilProgral
] AddConfigurationSact. . Mirosoft Practices.Recipefram... Mictosoft Practices.Rec... CilProgral

O Addcustomaction Microsoft.Practices RecipeFram... Microsoft Practices.Rec... CiiProgra
[Addeventaction Microsoft.Practices RecipeFram... Microsoft Practices.Rec... CiiPrograiy|
KTl | LIJ
e | oo
—hccessDatasaurce
Language: Invariant Language (Invariant Country) Loowe |
G =

ok | col | et

image7.jpeg
‘ShellForm.cs [Design] | - x

[Bsteirom =i

Ble

N

L _mainstatusstrip 32 _mainToolstrip = _mainMenustrip

image8.jpeg
[Add New Item - Infrastructure.Interface 2 x]

Templotes:

Visual Studio installed templates

ow Document

(wPF)

- ResourceDictonary (WPF)

) Class

& Custom Contrl (PF)

(5] ser Control
ivheried Form

] Component Class

0L Fie
[SJHTML Page
@btmanFie
2 crystalReport
) ostallr Class

< windoms Script Host

Page (wPF)

7 user Cortrol (WPF)

<oy Inteface

SSUCF Service

23 web Confguration Fie
Inherited User Cortrol

501 Database:

2] %ML Schema

AJstye Sheet

& [Cursor Fie
Teon e

5)35criptFie

) Assembly Information Fie

S PageFuncion (WPF)
vindan (weF)
) code e
(= Windows Form
| Custom Contral
Zweb Custom Contrl
jjDataset
ST

Text e
Report
) Windows Service

) VEScrit File
) Application Configuration Fil

[ety tarce dition

N

ILoggingServicelcs

e

image9.jpeg
[Add New Item

Templotes;

21|

Visual Studio installed templates

5 Flow Document

(wPF)

- ResourceDicionary (WPF)

Class

5 Custom Control (PF)

(5] ser Control
(inheried Form

3] Component Class

5L e
[SJHTML Page
abtmanFie
3 |crystalReport
) osallr Class

< windos Script Host

Page (wPF)
£ ser Control (wer)

Inerface

ARG Service

13 Web Configuration File
[Eiherted ser Control
/5L Database

2] schema

AJ5tyle Sheet

& cursor Fie

[l teon i

) 5eript File
8] Assembly Information Flle

PageFuncton (WeF)
vindow (iPE)
@) Code Fie
(= Windows Form
| Custom Contral
] web Custom Control
sjDataset
ST Fie
Text Fie
Report
&) indows Service

) VEScrit File
] Applcation Corfiguration Fle

[ety o dfton

e

LoggingService. cs|

e

image10.jpeg
21
Project types: Templates NET Framenork 35 v] 88| EE

Busness Inteligence Projects Visual Studio installed templates
Vil Basic

vl G {7 Business Modde ()
Vil 3¢ i Ada Foundational Modle (C#) | gJadd Foundational Modue (V)
Oter Project Types

& Guidance Packages

St CleneDevelopment i 2006]

Test Projects

| E—

[Creatos CaB moskd For usiess e and components.

e [Notfetons

Location [Ciroreccibemoam =] Bowse
==

image11.jpeg
|Add Business Module:

2lx|

Mok namespace oo Preview
[Pemeviorchap Notfieations 5 soee
optins £ Notfcations
3 Constants
T Create an ntetace brary For ths modde B srvees
T Create a i test projectfor this modde 5 Vews
@) Module.cs
i dientaion e tece capltes - e

| || B

image12.jpeg
(5] Soluion Demop (5 projects)
- L Source
=
= (] Notifications
(=l References
B v
) Module.cs

] ModueContraler.cs

image13.jpeg
(5] Saltion Demodps 6 pajects)
B sauce
i Tfrestructure
& 5 Notfcations
4 Propeties

- Ly References
3 Infrastructure Interface
3 Microsoft Practices.Compositelll
3 Microsoft Practices.ComposieUL WinForms
.3 Microsoft Practices.ObjectBulder

3 System
3 system.Data

3 System Drawing

3 System EnterpriseServices
3 system.webServices

3 system.windows.Forms
3 system.xml

Constants

Services

views

2] podde.cs
ModControler.cs

image14.jpeg
[Add View (with presenter] 21|

iens
T Create afolde orthe view (- Soluton review
7 how documentaion after recoe complates 5 sarce
3 Notfcations
202 Vews
] INews.cs.

[news.cs
2] Newspresenter.cs

el e

image15.jpeg
[Add View (with presenter] 21|

e
T Create afolde orthe view (- Soluton review
7 how documentaion after recoe complates 5 sarce
3 Notfcations
202 Vews
4] Ialerts.cs

8 Aerts.cs
2] Henspresenter.cs

e Ib]

||

image16.jpeg
21
Project types: Templates NET Framenork 35 v] 88| EE

Business Inteligence Projects Visual Studio installed templates

A Business Modue (VE)
A Foundationa Mol (C#) _aJAdd Foundational Modue (v8)

I5" Guidance Packages

St CleneDevelopment~ o z006]

st Projects

[E—

[Creatos CaB moskd For usiess e and components.

e [Sode

Location [Ciroreccibemoam =] Bowse
==

image17.jpeg
|Add Business Module:

2lx|

Mok namespace (- Soluton review
[pemamorteho Stods 5 soes
Optians 1 stocks
3 Constans
T Create an ntetace brary For ths modde B srvees
T Create a i test projectfor this modde 5 Vews
@) Module.cs
i dientaion e tece capltes - e

| || B

image18.jpeg
(5] Soluion Demop (6 projects)
- L Source
&
A nokicstons
& s
4 Properes
(sl References.
Constants
vens
) Module.cs
&) ModuleController.cs

image19.jpeg
(5] Saltion Demodps 6 pajects)
& sowee

i Tnfrestructure

3 Notfications

& (& stocks

54 Propertes

- Ly References
3 Infrastructure Interface
3 Microsoft Practices.Compositelll
3 Microsoft Practices.ComposieUL WinForms
.3 Microsoft Practices.ObjectBulder

5 System
3 SystemData
3 System Drawing
3 System Enterpriservices
3 System web,Servces
3 System Windows Forms
3 System i

Constants
Servies

vews

] Mode.cs

2] ModuleControllr.cs

image20.jpeg
Templotes;

T ResourceDickonary (WPF)
@cess

5= Custom Cantrol (WPF)

(5] ser Control

(inheried Form

2] Component Clss

(4L Fie

[SJHTML Page

abtmanFie

] CrystalRepart

B Instalr Class
3 windos Script Host

5 bouk B

T User Contral (WPF)
sy Interface

RWCF Service

13 Web Configuration File
[finheried User Control
/5L Database

5] %ML Schema

AJ5tyle Sheet
[IyCursor File

(i) tcon Fie:

) 5eript File
ssembly Information Fil

] settngs e
0cbunger isuaeer

T indow (WPF)

] Cade File

indows Form
] Custom Control

e Custom Corol

[ipataset
ST Fie

Text Fie
Report
&) indows Service
53] Vescriot Fie

-] Applcation Corfiguration Fle:

[SIMo Parent
2 Class Diagram

[Fe For g srces

e Resources.resx

e

image21.png

image22.png

image23.jpeg
Thepreal

image24.jpeg
[Add View (with presenter] 21|

[puvatod
T Create afolde orthe view (- Soluton review
7 how documentaion after recoe complates BT
5@ stecks
202 vews

2] Tuystock.cs
18] Buystockes
2] uystodtaresenter

| —r

||

image25.jpeg
g Collection Et

2ix|
Enter the stingsinthe colcton (ane per ne):

WFT
UFIDA

=
etd

image26.jpeg
[Add View (with presenter] 21|

everts
T Create afolde orthe view (- Soluton review
7 how documentaion after recoe complates BT
5@ stecks
202 Vews

] Reports.cs
5] Reports.cs
2] Reportspresenter.c

| —r]

||

image27.jpeg
Debug | Tools Test Window Community Help

Windows

b St Debugging # eventpublication
StatWithout Debugging Cul+FS
Atachto Process...

Exceptions.. Cul+D.E (5] Solution DemoApp’ (6 projects)

StepInto N g !‘ =

O Ifstucture
20wy 5 B fastructurenteface
Toggle Breakpaint Fo @ frastrucure ibrary
Tenen InfrastructureModule

Shel

Notfications
Stocks

© Delete Allreskpoints CuleShicerd

image28.jpeg
o Shell Form

Some text some text, some text
Some text some text, some text

e (et

image29.jpeg
File DumpWorkdtem Show News

Some text some text, some text
Some text, some text, some text

e

image30.jpeg
File

Dump Warkitem

Show News

Today News

Some text, some test, some text
Some text, some test, some text

Gronsesapariior) |

Close View Programatically

image31.jpeg
5 Shell Form =1

File DumpWorkdtem Show News

Today News - x

Alerts

Some text, some test, some text (Alert for MSFT

Some text, some test, some text

The stock was succesfully bought

image32.jpeg
a stock was bought WsFT|-{A new stock was bought UFIDA -]

image33.jpeg
a2 Shell Form
File Dump Workltem|

romien e] =

Some text, some test, some text
Some text, some test, some text

Crinsssrapariion) [des Vi Poammsiv)

(F=3 Eon o)

Alerts

Alert for MSFT

image34.jpeg
Today News) Today News

Some text, some text, some text
Some text, some test, some text

i) Beme

Alerts

Alert for MSFT

Ready

Ot

Show output fram: Debug

P Ay %=

- X

Guarcrarcs

Suarcparcs

Count
Count

3
3

B firsc chance exception of typs 'System ArgumencException’ occurred in mscorlib dll
The chread 0x80 has exited with code 0 (0x0)

image1.jpeg
e

5

Shell Form
File Dump Workdtem

Show News

Today News

Some text, some tex
Some text, some-

sometet
sometet

Change SmartPartinfo. Close View Programatically

180 DemoApp (Running.

Shell Form

- x

151 AM

image2.jpeg
Project types:

Templotes;

NETFramework 35 <)

Business Inteligence Projects

Visual Studio installed templates

22 St Client Application (Visusl Basic)

Detbted system Sotons
Ot Prject Types
15 uttncs packaes
AopicatonbockSftuare Factor
[5mrt ok Developmen - or 206]
GudancePecage Develapment
espropcts

[—

[Creste st et sppicaio Ert uses CAB nd Etaraee orary

e =

Location; [ciprojects

DemoApp I Greste directory for solution
==

=] _rowse

Soltion are!

