

26
Lab 3: Creating a 'Ship New Order' View
Lab 3: Creating a View
Purpose
Estimated time to complete this lab: 25 minutes.
In this lab, you will learn how to use the Smart Client Development guidance package to create a view in a business module and show the view in the shell form.
After completing this lab, you will be able to:
Add a new Composite UI Application Block view to a smart client application using the guidance package.
Implement the Model-View-Presenter pattern in smart client applications.

[bookmark: _Toc135037075][bookmark: _Toc135046450]Preparation
Before proceeding with this lab, you must install and configure the prerequisite software. For more information, see the topic Start Here.
Open the solution for the previous lab (either the one that you created or the end solution for that lab.)
Background
Modules can also contain visual representations of data, such as a control, a Windows Form, or a wizard page. These visual representations are referred to as views or SmartParts. As an example, a module that manages information from a Customer Relationship Management (CRM) system has a view that displays a customer's contact information. The module loads this view during module initialization. When the application executes the business logic that requires the customer contact information to be displayed, the application loads the customer contact information view into the shell. The following figure illustrates a module that adds two views to the root WorkItem and later displays the views in the shell.
[image: C:\DepotsRTM\SmartClientFactory\Labs\CS\Developer\03 Creating a 'Ship New Order' View\instructions\images\Lab03-Ex01-CABViews.png]
Figure 1
Views defined in module displayed in shell workspaces
Model-View-Presenter (MVP) Pattern
The forms in a smart client application frequently contain various controls, handle user events, and contain logic to alter the controls in response to these events. Writing this code in the form class makes the class complex and difficult to test. In addition, it is difficult to share code between forms that require the same behavior.
The solution is to separate the responsibilities for the visual display and the event handling behavior into different classes. A view class manages the controls on the form, and it forwards events to a presenter class. The presenter contains the logic to respond to the events, and in turn, manipulate the state of the view. The presenter class uses the model (frequently, this is application state that is represented by business entities) to determine how to respond to the events.
This solution separates the responsibilities and also allows you to test the behavior without using the user interface. Figure 2 illustrates the logical view of the pattern.
[image: C:\DepotsRTM\SmartClientFactory\Labs\CS\Developer\03 Creating a 'Ship New Order' View\instructions\images\Lab03-Ex01-MVP.png]
[bookmark: _Ref142377781]Figure 2
MVP pattern logical view
The model holds the business data, such as business entities. The model is unaware of the presenter that changes its state. The view holds a reference to its presenter and delegates to the presenter the handling of all user events (no business logic is implemented in the view). The presenter does not reference the class that implements the view; instead, it references an interface for the view (IView). With this, you can easily substitute one view implementation with another for the same presenter. One application of this feature is to test your presenter with a view implementation that does not have a user interface.
Exercise 1: Implementing the User Interface
[bookmark: _Toc135043090][bookmark: _Toc135046452]In this exercise, you will use the guidance package to create a view for the ShippingModule module. This view will be the interface presented to the user to ship a new order. The implementation will follow the MVP pattern. Later you will add code to the ShippingModule to display this view when the user clicks the Ship Order button in the shell.
Task 1. Add a new view (with presenter)
In this task you will use recipe named Add View (with presenter) to create classes that implement the Model-View-Presenter pattern.
In Solution Explorer, right-click the Views folder of the ShippingModule project, point to Smart Client Software Factory, and then click Add View (with presenter).
Note: The Views folder was created by the Add Business Module recipe. You are not required to create your views in this folder. It is a recommendation for organizational purposes.
The Add View (with presenter) recipe launches a wizard. Enter ShipNewOrderView in the View Name field and select the Create a folder for the view option.
[image:]
Figure 3
Add View (with presenter) wizard page
If Create a folder for the view is selected, the recipe will create a folder and place the new items in this folder; otherwise, the new items are placed in the selected folder in solution explorer.
If you want to see a summary of the recipe actions and suggested next steps after the recipe completes, select the Show documentation after recipe completes check box.
Click Finish. The recipe generates the folder, classes and interface for the implementation. Figure 4 illustrates the new items as they appear in Solution Explorer.

[image:]
Figure 4
ShipNewOrderView in Solution Explorer
The recipe generates the following items:
A view interface class. This is an empty interface definition for the view. You will modify this interface to define the public interface to the view. (The presenter class uses this interface to communicate with the view.)
A view implementation user control. This class derives from UserControl and has the [SmartPart] attribute. This is required to support the inversion of control functionality, which will automatically associate service dependencies, controllers, and so on. The user control also implements the view interface and contains a reference to its presenter. You will modify this class to call the presenter for user-interface actions that affect other views or business logic. The user control implementation is split into three files using a partial class:
ShipNewOrderView.cs. This file contains user code. Use this file to implement the view logic. If you run the recipe again for the view, the code in this file will not be removed.
ShipNewOrderView.Designer.cs. This file contains the designer code for the user control. Typically you do not edit the content of this file manually; instead, you use the Visual Studio designer.
ShipNewOrderView.GeneratedCode.cs. This file contains generated code to have a new instance of the presenter injected when the user control is created. The content of this file is regenerated when you run the recipe again for the view; therefore you should not edit it.
A presenter class for the view. This class extends the Presenter base class defined in Infrastructure.Interface project and contains the business logic for the view. You will modify this class to update the view for your business logic. The implementation of the class is split into two files using a partial class:
ShipNewOrderViewPresenter.cs. Use this file to implement the presenter logic. If you run the recipe again for the view, the code in this file will not be lost.
ShipNewOrderViewPresenter.GeneratedCode.cs. This file contains generated code which gets regenerated every time you run the recipe for this view; therefore you should not edit it.

Note: The Presenter base class contains generic code for presenters. It includes a reference to a view and a reference to the WorkItem that contains the view.
[bookmark: _Toc135046456]Task 2. Create business entities
In this task you will create two business entities that will represent an order and its detail items. You will use these entities throughout the application.
Create a folder named BusinessEntities in the ShippingModule project.
Add a new class file named Order.cs to the folder you have just created. To do this, right-click the BusinessEntities folder, point to Add and select Class. In the Add New Item dialog, set the item name to Order and click Add.
Replace the empty class definition with the following code:
C#
public enum OrderState
{
 New,
 Submitted
}

public class Order
{
 private List<OrderLineItem> _lineItems = new List<OrderLineItem>();
 private string _customerName;
 private int _orderId;
 private OrderState _state = OrderState.New;

 public List<OrderLineItem> LineItems
 {
 get { return _lineItems; }
 set { _lineItems = value; }
 }

 public OrderState State
 {
 get { return _state; }
 set { _state = value; }
 }

 public string CustomerName
 {
 get { return _customerName; }
 set { _customerName = value; }
 }

 public int OrderId
 {
 get { return _orderId; }
 set { _orderId = value; }
 }
}
Add a new class file named OrderLineItem.cs to the BusinessEntities folder.
Use the following code to define the class:
C#
public class OrderLineItem
{
 private int _productId;
 private string _description;
 private short _quantity;
 private string _location;
 private int _boxNumber;

 public int BoxNumber
 {
 get { return _boxNumber; }
 set { _boxNumber = value; }
 }

 public int ProductId
 {
 get { return _productId; }
 set { _productId = value; }
 }

 public string Description
 {
 get { return _description; }
 set { _description = value; }
 }

 public short Quantity
 {
 get { return _quantity; }
 set { _quantity = value; }
 }

 public string Location
 {
 get { return _location; }
 set { _location = value; }
 }
}
Build the ShippingModule project.

Note: Storing your business entities in a folder named BusinessEntities is just a recommendation for organizational purposes.
Task 3. Add controls to the design surface
In this task you will drag controls onto the view surface. These controls will display customer name, order details, and buttons to print shipping labels, print a packing slip, and to finish the order. Figure 5 illustrates the layout of the ShipNewOrderView.
[image:]
Figure 5
ShipNewOrderView layout
Double click in ShipNewOrderView.cs to open the designer window.
Go to the Properties window and set the following property value for the UserControl:
Size = 422, 278
Open the Toolbox and drag a Label control onto the upper-left corner of the design surface. Open the Properties window for the label and set the following property values:
Text = “Customer Name:”
Location = 3, 7
Drag a TextBox from the General tab of the Toolbox and set the following properties:
Anchor = Top, Left, Right
Location = 94, 4
Width = 325
ReadOnly = True
In the Properties window for the text box, click the plus sign next to (DataBindings), and then click Add Project Data Source in the Text drop-down list box. This will launch the Data Source Configuration Wizard.
Note: In this text box, we will show the customer’s name. To accomplish this task, we create a BindingSource associated with the Order business entity.
Select Object as the data source, and then click Next.
In the object browser, navigate through the AdventureWorks.ShippingModule.BusinessEntities node in the ShippingModule assembly, and then select Order.
Click Finish. An object browser will be shown for the Text binding property. Select the CustomerName field of the Order class.
Drag a DataGridView from the Data tab of the Toolbox onto the design surface. You will use the DataGridView to display the order details.
Point to the smart tag, and then click Add Project Data Source in the Choose Data Source drop-down list box to launch the Data Source Configuration Wizard.
[image:]
Figure 6
Grid View’s Smart Tag
Select Object as the data source, and then click Next.
In the object browser, navigate through the AdventureWorks.ShippingModule.BusinessEntities node in the ShippingModule assembly and select OrderLineItem.
Click Finish. A BindingSource will automatically be created.
Open the smart tag again and click Edit Columns to open the Edit Columns dialog box.
Sort the columns and set the HeaderText, as shown in figure 6 and then click OK.
Set the following properties for the DataGridView:
Anchor = Top, Bottom, Left, Right
Location = 3, 30
Size = 416, 220
AutoSizeColumnsMode = Fill
RowHeadersVisible = False
Add a ToolStrip at the bottom of the UserControl where Print Shipping Label, Print Packing Slip, and Finished buttons will be placed. To do this, in the Toolbox, double-click the ToolStrip button in the Menus & Toolbars section.
Set the following properties (you can use the smart tag for the first three):
Dock = Bottom
GripStyle = Hidden
RenderMode = System
RightToLeft = Yes
Click on the ellipsis of the Items property to open the Items Collection Editor.
Add three buttons and set this property for all of them:
DisplayStyle = Text
Set the following properties for the corresponding button:
1st button: Text = “Finished”; Name = FinishedButton
2nd button: Text = “Print Packing Slip”; Name = PrintPackingSlipButton
3rd button: Text = “Print Shipping Labels”; Name = PrintShippingLabelButton
Click OK and save the changes.

[bookmark: _Toc135046457]Task 3. Explore the view code
In this task you will explore the view code to understand how the view collaborates with the presenter.
In Solution Explorer, right-click the file ShipNewOrderView.GeneratedCode.cs and select View Code. This file is located in the Views\ShipNewOrderView folder of the ShippingModule project.
The view contains a public property for the presenter with the [CreateNew] attribute applied to it so that ObjectBuilder injects a new instance of the ShipNewOrderViewPresenter class when the view is created:
C#
[CreateNew]
public ShipNewOrderViewPresenter Presenter
{
 set
 {
 _presenter = value;
 _presenter.View = this;
 }
}
In this property, the presenter injected by ObjectBuilder is stored in the local variable _presenter, and the view is assigned to the presenter. The _presenter variable is declared in the ShipNewOrderView.Designer.cs file.
The view also overrides the OnLoad method of the UserControl class to notify the presenter that the view is ready, in the code of the ShipNewOrderView.cs file:
C#
protected override void OnLoad(EventArgs e)
{
 _presenter.OnViewReady();
 base.OnLoad(e);
}
Calling the OnViewReady method of the presenter in the OnLoad method allows the presenter to execute business logic when the view is loaded.

Task 4. Implement the view logic
You now have a user interface that displays controls but does not respond to user input. In this section, you will implement event handlers for the controls’ events (by using method calls to the presenter) and public methods in the view that the presenter will call. In the following exercise, you will be guided to implement the presenter logic.
It is the view's responsibility to display a particular order to the user, so you will add a method named BindToOrder to the IShipNewOrderView interface. This method will be in charge of showing the order details in the view.
In the Views\ShipNewOrderView folder of the ShippingModule project, open the IShipNewOrderView.cs file.
Paste the following code inside the interface definition:
C#
void BindToOrder(AdventureWorks.ShippingModule.BusinessEntities.Order order);
This method will be called from the presenter whenever an order has to be displayed to the user.
Open the code view for the file ShipNewOrderView.cs. Right-click IShipNewOrderView (in the first line of the class definition), point to Implement Interface, and then click Implement Interface to let Visual Studio automatically generate the interface’s method skeletons.
Add the following using statement at the top of the file.
C#
using AdventureWorks.ShippingModule.BusinessEntities;
In the IShipNewOrderView Members code region, replace the BindToOrder method with the following code.
C#
public void BindToOrder(AdventureWorks.ShippingModule.BusinessEntities.Order order)
{
 orderBindingSource.Clear();
 orderBindingSource.Add(order);

 orderLineItemBindingSource.Clear();
 foreach (OrderLineItem item in order.LineItems)
 {
 orderLineItemBindingSource.Add(item);
 }
}
This method clears the orderBindingSource and adds the new order. The binding source is used as the data source for the Customer Name TextBox’s Text property. Then it clears the binding source which contains line items and adds all the items of the new order. This means the new line items will be shown in the DataGridView.

In the next steps you will implement a method that will display a message box. The presenter will invoke this method to display a message to the user.
In the Views\ShipNewOrderView folder of the ShippingModule project, open the IShipNewOrderView.cs file and add the following method to the interface body:
C#
void ShowMessage(string message);
This method will be called from the presenter whenever a message has to be displayed to the user.
Open the code view for the file ShipNewOrderView.cs and paste the following code in the IShipNewOrderView Members code region:
C#
public void ShowMessage(string message)
{
 MessageBox.Show(message);
}

In the following steps, you will write code in the view to respond to user clicks on the bottom ToolStripButtons. In the view, you will call the presenter to perform each of the required actions.
Edit the view in the Designer. Double-click the button PrintShippingLabelButton to create an empty Click event handler for it.
Add the following highlighted code to the event handler to call the presenter:
C#
private void PrintShippingLabelButton_Click(object sender, EventArgs e)
{
 _presenter.PrintShippingLabels();
}
When the user clicks the Print Shipping Label button, the view calls the presenter to perform the labels printing.
The PrintShippingLabels method is not yet implemented in the presenter. If you build the solution, you will get compile time errors. Right-click the method call or press SHIFT+ALT+F10 and select Generate Method Stub in the contextual menu to have the method definition created automatically by Visual Studio 2005, in the presenter class.
Go back to the Designer and double-click the PrintPackingSlipButton button.
Use the following code to implement the PrintPackingSlipButton_Click method:
C#
private void PrintPackingSlipButton_Click(object sender, EventArgs e)
{
 _presenter.PrintPackingSlip();
}

Generate a method stub for the PrintPackingSlip method as you did with PrintShippingLabels method.
In the Designer, double-click the button FinishedButton.
Replace the FinishedButton_Click with the following code:
C#
private void FinishedButton_Click(object sender, EventArgs e)
{
 _presenter.Submit();
}

When the user clicks the Finished button, the view tells the presenter to submit the order.
Generate method stub for Submit.

[bookmark: _Toc135046458]Task 5. Show the view in the shell
In this task you will write the code to display the view when the user clicks the Ship Order button in the launch bar.
Open the ModuleController.cs file in the ShippingModule project.
Replace the body of the OnShowOrder method with the following code:
C#
[CommandHandler(CommandNames.ShipOrder)]
public void OnShowOrder(object sender, EventArgs e)
{
 ShowViewInWorkspace<ShipNewOrderView>(WorkspaceNames.PrimaryWorkspace);
}
When the user clicks the Ship Order button in the shell, the ShipOrder command is executed by the Composite UI Application Block. Thus, the OnShowOrder method is invoked. The ShowViewInWorkspace method is implemented in the WorkItemController. This method creates a new ShipNewOrderView instance and adds it to the SmartParts collection of the WorkItem. Then, it shows the view in the workspace supplied as a parameter (in this case, the primary workspace in the Shell).

[bookmark: _Toc135046459]Task 6. Compile and run the solution
In this task you will verify that you correctly implemented the ShipNewOrderView view and that it appears in the Shell when you click the Ship Order button.
If you try to build the solution, you will get compilation errors. The errors are caused because the mock view (MockShipNewOrderView) that was created by the Add View recipe does not implement the new methods that you added to the IShipNewOrderView interface. To remove these errors, you need to implement the methods. To do this, open the file Views\ShipNewOrderViewPresenterFixture.cs in the ShippingModule.Tests project, right-click IShipNewOrderView (in the first line of the MockShipNewOrderView class definition), point to Implement Interface, and then click Implement Interface to let Visual Studio automatically generate the interface’s method skeletons.
Build and run the application.
You will see the same MDI interface that you saw in the previous lab. Click the Ship Order button to open the ShipNewOrderView view. You will see empty controls that show no information because the presenter logic is not yet implemented. If you click any of the three buttons in the ToolStrip of the view, an exception will be thrown because the operations in the presenter are not implemented yet. In the next exercise, you will implement the presenter logic.
You can click the Ship Order buttons multiple times to create new instances of the ShipNewOrderView view, showing different orders with no title. In exercise 3, you will implement the ISmartPartInfoProvider interface to provide the title of the view.
[image:]
Figure 7
ShipNewOrder view displayed in shell
Close the application.

Exercise 2: Implementing the Presenter Logic
In this exercise, you will implement the logic for the presenter. A presenter contains code to handle user events and to update the state of the view.
Note: Typically you do not write extensive business logic in the presenter; instead, you delegate it to other components named services. This approach lets you consume the business logic encapsulated in services from other presenters and facilitates testing because you can test the presentation logic and the business logic separately. In this exercise though, you will perform simple business logic tasks in the presenter to keep the exercise focused on views and presenters. You will replace this business logic with a service in a subsequent lab.
[bookmark: _Toc135046464]Task 1. Show the next order when the view loads
When the ShipNewOrderView loads, it must display the next order ready to be shipped. This business logic will be implemented in the OnViewReady method of the presenter. The OnViewReady method is called by the view when it is loaded. You will modify this method to bind the next available order to the view.
In the Views\ShipNewOrderView folder, open the ShipNewOrderViewPresenter.cs file and add the following using statement at the top of the file.
C#
using AdventureWorks.ShippingModule.BusinessEntities;
Paste the following code to declare a local variable to hold a reference to an Order instance and to define the constructor.
C#
private Order _order;

public ShipNewOrderViewPresenter()
{
 _order = CreateOrder();
}
The _order variable will be used to store current order information. In the constructor, you create an order by calling the CreateOrder method (which you will implement in the next step) and store it in the _order variable for further use.
Use the following code to define the CreateOrder method. This method basically creates a new order with a correlative identifier, fills it with a few order line items, and returns it. In a subsequent lab you will encapsulate this logic in a service.
C#
private static int nextOrderNumber = 1;
private static Order CreateOrder()
{
 Order order = new Order();
 order.OrderId = nextOrderNumber++;
 order.CustomerName = "Hance, Jim";

 for (int i = 1; i <= 3; i++)
 {
 OrderLineItem item = new OrderLineItem();
 item.Location = "One Microsoft Way, Redmond, WA, US";
 item.ProductId = i;
 item.Quantity = (short)i;
 item.BoxNumber = 0;
 item.Description = String.Format("Item {0} description", i);
 order.LineItems.Add(item);
 }

 return order;
}
The OnViewReady method is called by the view when it loads. Add the following highlighted line to the method body to bind the view to the order when it is loaded:
C#
public override void OnViewReady()
{
 View.BindToOrder(_order);
 base.OnViewReady();
}

[bookmark: _Toc135046465]Task 2. Submit the order
In this task you will write code in the Submit method to submit an order. The view calls the Submit method when the Finished button is clicked.
Open the ShipNewOrderViewPresenter.cs file.
Replace the Submit method with the following code:
C#
public void Submit()
{
 if (!Validate())
 {
 View.ShowMessage("Please enter all the box numbers before performing this operation.");
 return;
 }

 _order.State = OrderState.Submitted;
 OnCloseView();
}
This method validates the order by calling the Validate method (which you will implement in the next step) and if validation does not succeed, it tells the view to display an error message by invoking the ShowMessage method. If the validation succeeds, it changes the state of the order to Submitted and closes the view by calling the OnCloseView method. The OnCloseView method is defined in the Presenter base class.
Paste the following code to define the Validate method.
C#
// Note: This validation logic is not a real-world example but is sufficient
// to force the user to enter box numbers in the view.
private bool Validate()
{
 foreach (OrderLineItem lineItem in _order.LineItems)
 {
 if (lineItem.BoxNumber < 1)
 return false;
 }
 return true;
}

[bookmark: _Toc135046466]Task 3. Compile and run the solution
In this task you will verify that you correctly implemented the presenter logic.
Build and run the application.
The MDI interface will appear. Click the Ship Order button to open the ShipNewOrderView displaying an order.
Press the Finished button. A message box will appear asking you to enter all the box numbers before submitting the order. Click OK.
[image:]
Figure 8
Error message displayed in the view
Enter some numeric values for the Box column, and then click the Finished button to submit the order. The ShipNewOrderView view will close.
Note: You have to press the Tab key after entering numeric values in the Box column. Otherwise, the validation will fail.
[image:]
Figure 9
Order information displayed in view
Close the application.

Exercise 3: Showing Tab Names Implementing ISmartPartInfoProvider
In this exercise, you will implement the ISmartPartInfoProvider in a view to provide information about it.
Background: SmartParts and SmartPartInfo
SmartParts are the visual components of an application. You can create SmartParts by customizing a standard user control. To enable the consumer of a workspace to provide rich hinting and extra information about a SmartPart, workspaces use an implementation of ISmartPartInfo that the SmartPart author can add to their controls.
The ISmartPartInfoProvider interface
The ISmartPartInfoProvider interface contains only one method named GetSmartPartInfo:
C#
public interface ISmartPartInfoProvider
{
 ISmartPartInfo GetSmartPartInfo(Type smartPartInfoType);
}
The GetSmartPartInfo method returns the SmartPartInfo of the view, which provides rich hinting and extra information about it.
You can make your view implement the ISmartPartInfoProvider interface to indicate that it can provide a SmartPartInfo.
[bookmark: _Toc135046468]Task 1. Implement the ISmartPartInfoProvider interface in the view
In this task you will modify the ShipNewOrderView view to implement the ISmartPartInfoProvider interface. The SmartPartInfo provided by the view will be used by the TabWorkspace in the shell to display the title of the view in the tab.
Open the ShipNewOrderView.cs file in code mode.
Replace the class signature with the following code to indicate that the ShipNewOrderView view implements the ISmartPartInfoProvider interface:
C#
public partial class ShipNewOrderView : UserControl, IShipNewOrderView, ISmartPartInfoProvider
Right-click ISmartPartInfoProvider, point to Implement Interface, and then click Implement Interface. Visual Studio will generate the GetSmartPartInfo method automatically.
Replace the generated GetSmartPartInfo method with the following code:
C#
public ISmartPartInfo GetSmartPartInfo(Type smartPartInfoType)
{
 return _presenter.GetSmartPartInfo(smartPartInfoType);
}
Whenever a workspace asks for a SmartPartInfo to the view, the view will forward the request to the presenter, which will return a SmartPartInfo with current order information.
Go to the ShipNewOrderViewPresenter.cs file.
Add the following using statement before the class definition. You will use it to refer to the ISmartPartInfo interface.
C#
using Microsoft.Practices.CompositeUI.SmartParts;
Define the GetSmartPartInfo method with the following code.
C#
public ISmartPartInfo GetSmartPartInfo(Type smartPartInfoType)
{
 ISmartPartInfo result =
 (ISmartPartInfo)Activator.CreateInstance(smartPartInfoType);
 result.Title = String.Format("Order #{0}", _order.OrderId);
 result.Description = "Select this to select and ship the next order from the queue.";

 return result;
}
In this method, you create a new SmartPartInfo and set the title and description using current order information.
[bookmark: _Toc135046471]
Task 2. Compile and run the solution
In this task you will verify that the view provides a valid ISmartPartInfo instance.
Build and run the application.
The MDI interface will appear. Click the Ship Order button to open the ShipNewOrderView view displaying an order. The order number appears in the tab title.
[image:]
Figure 10
Order number in tab title
Close the application.

To check the finished solution open the solution file CS\Developer\03-CreatingView\AdventureWorksCycles.sln.

26
Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced for any purpose without express written permission from the Microsoft Corporation.
image2.png

image3.png
=

image4.png
Solution Explorer - Solution ‘AdventureWorksCyclesEx01" (5 projects)

Ble=

[5] Solution AdventureWorksCyclesBOL' (5 projects)

& Source
Infrestructure
@ ifrsstructurelnterface
& nfrsstructure.ibrary
& nfrsstructure Module
0 Shell

& (@ ShippingModule
Properies

c References
3 Constants
Resources
3 Senvices

2] IshiphewOrderViewics
@ ShipNewOrderView.cs
4] ShipewOrderView Designer.cs
) ShipewOrdeView, GenerstedCode.cs
-) ShipNewOrderVienPresentercs

4] ShipewOrderViewPresenter GeneratedCode.cs
@) Modulecs
) ModuleControllrcs

image5.png
Print Shipping Labels Print Packing Slip Finished

image6.png
Smart Tag

Print Shipping Labels Print Packing SiipFinished

image7.png
Ship Order

Print Shipping Labels Print Packing Siip _Finished

Instance of the
ShipNewOrderView view

image8.png
5 Shell Form e/@] %]

File

Ship Order.

| Please enter al the box numbers before performing this operation.

image9.png
Print Shipping Labels Print Packing Slip Finished

image10.png
Tab title provided by the
SmartPartinfo Title property

Print Shipping Labels Print Packing Siip Finished

image1.png
UlExtension Site
(StatusSirip)

Ul Exansion St
(MenuSiip)

