

17
[bookmark: _Toc133925034]Lab 2: Creating a Shipping Module
Lab 2: Creating a Business Module
Purpose
Estimated time to complete this lab: 25 minutes.
In this lab, you will use the Smart Client Development guidance package to add a business module to you smart client application solution. You will add code to the module that updates the user interface of the shell to expose features available in the module.
After completing this lab, you will be able to:
Understand the components of a business module
Add a new business module to a smart client application using the guidance package.
Update the shell with user interface elements from the module

Preparation
Before proceeding with this lab, you must install and configure the prerequisite software. For more information, see the topic Start Here.
Open the solution for the previous lab (either the one that you created or the end solution for that lab.)
[bookmark: _Toc133925039][bookmark: _Toc135043091]Background: Business and Foundational Modules
Developers can use the Smart Client Software Factory to develop smart client applications composed of independent, but collaborating, modules. Productivity increases because each developer (or team) is able to concentrate on a specific task. For example, developers of service components work with only the business logic in the component; they do not have to be concerned with background issues, such as threading and security or the appearance and behavior of the application.
Applications built with the Smart Client Software Factory have a design that delineates the difference between writing shell logic (requiring expertise in Windows Forms, user controls, and appearance and behavior), infrastructure components (built only once per application or re-used from other applications), and business logic (the user interfaces, logic, entities, and service agents of the specific application). This means that the application architecture supports developers and teams that have different concerns during the creation of an application. Figure 1 illustrates an example of a smart client application architecture that supports concerns of different teams and individuals with different expertise within a team.

[image: C:\DepotsRTM\SmartClientFactory\Labs\CS\Developer\02 Creating a Shipping Module\instructions\images\Lab02-Ex01-CABModules.png]
[bookmark: _Ref142368541]Figure 1
Separation of concerns with a Composite UI Application Block application
Modules are distinct deployment units of a Composite UI Application Block application. You use modules to encapsulate a set of concerns of your application and deploy them to different users or applications. The Smart Client Software Factory makes a distinction between two different types of modules: business modules and foundational modules.
Business Modules
A business module represents the conventional Composite UI Application Block module. It has at least one WorkItem (specifically, a ControlledWorkItem) and contains business logic elements. Typically, it includes some combination of services, views, presenters, and business entities.
The Smart Client Software Factory reference implementation contains examples of business modules. In the Branch Client reference implementation, the BasicAccounts.Module, BranchSystems.Module and CreditCardAccounts.Module projects are business modules. These modules encapsulate the logic for the different types of back-end financial systems. For example, the BranchSystems.Module module contains business logic to manage a queue of customers. This logic includes determining the user interface elements to display based upon the current user’s role.
When you use the Smart Client Software Factory to create a business module, the Add Business Module recipe creates both a Module class and a ModuleController class. As with all Composite UI Application Block modules, the Module class derives from the ModuleInit class. In the Load method of the Module class, the recipe generates code to create a new ControlledWorkItem and add it to the application WorkItem hierarchy, as shown in the following code.
C#
public override void Load()
{
 base.Load();
 ControlledWorkItem<ModuleController> workItem =
 _rootWorkItem.WorkItems.AddNew<ControlledWorkItem<ModuleController>>();
 workItem.Controller.Run();
}

Foundational Modules
A foundational module is a module that either provides services to the shell and other modules, provides a layout, or both. It does not implement a use case or contain a WorkItem.
In the Branch Client reference implementation, the BranchSystems.Layout and Infrastructure.Module projects are foundational modules. The BranchSystems.Layout module does not contain a WorkItem (there is no ModuleController class). Instead, it contains a view to provide the layout of the shell form’s user interface. The Infrastructure.Module module provides services (for example, caching) to other modules in the application.
In a subsequent lab, you will add a foundational module to your application.
Module Loading and Initialization
The Composite UI Application Block provides a service to load modules when the application starts. It uses a catalog file to determine the modules to load. The default name for this file is ProfileCatalog.xml. The following XML shows the contents of the ProfileCatalog.xml file for the Disconnected Service Agent (with CAB) QuickStart.
XML
<SolutionProfile xmlns="http://schemas.microsoft.com/pag/cab-profile/2.0">
 <Section Name="Services">
 <Modules>
 <ModuleInfo AssemblyFile="Infrastructure.Module.dll" />
 </Modules>
 </Section>
 <Section Name="Apps">
 <Dependencies>
 <Dependency Name="Services" />
 </Dependencies>
 <Modules>
 <ModuleInfo AssemblyFile="QuickStart.RestaurantModule.dll" />
 </Modules>
 </Section>
</SolutionProfile>
When the application block loads a module, it uses reflection to determine if the module includes a class that implements the IModule interface, and executes the Load method of that class. You implement the IModule interface (typically by deriving from ModuleInit) to initialize and run the module's WorkItems.
Exercise 1: Creating a New Business Module
In this exercise, you will create a business module for your application. This module contains the business logic to ship an order. The module exposes the feature to the user through an icon that appears in the shell’s launch bar (the ToolStrip control).
[bookmark: _Toc135043090]Task 1. Use the Guidance Package to add a new Business Module
In this task you will add a business module to your application. The guidance package includes the Visual Studio template named Add Business Module (C#). This template unfolds a new class library project for the module.
In Solution Explorer, right-click the Source solution folder, point to Smart Client Software Factory, and then click Add Business Module (C#). The Add New Project dialog box appears with the Add Business Module (C#) template selected.
Enter ShippingModule as the Name and set the Location to the Source folder of the solution.
Click OK. The guidance package displays the Add Business Module wizard.
Figure 2
Add Business Module Wizard
Deselect the option Create an interface library for this module. If you select this option, the recipe will create an additional project to contain the elements that provide the public interface to the assembly. For more information about separating the interface from the implementation of modules, see the Module Interface Separation pattern in the Smart Client Software Factory documentation.
Select the option Create a unit test project for this module to have the recipe create a test project for the module with test classes for your module components. You will implement unit tests in a subsequent lab.
Optionally, select the option Show documentation after recipe completes if you want to see a summary of the recipe actions and suggested next steps after the recipe completes.
Click Finish. The guidance package will generate a new class library project named ShippingModule.
[image:]
Figure 3
Shipping Module in Solution Explorer

The root folder of the project contains two classes, Module and ModuleController. The Module class derives from the Composite UI Application Block class ModuleInit. The Composite UI Application Block calls the Load method of this class on startup. The Load method contains code to create and run a new WorkItem. This WorkItem is the module’s main WorkItem.
The ModuleController class contains methods that you can modify to customize the behavior of the module on startup. For example, you can add services or display user-interface items. (In the next task you will modify some of these methods.)
The project also contains the following folders:
Constants. This folder contains four classes named CommandNames, EventTopicNames, UIExtensionSiteNames, and WorkspaceNames. You can modify these classes to define module-specific identifiers for your commands, event topics, UIExtensionSites, and WorkSpaces.
Services. You use this folder to store the implementation of business services.
Views. You use this folder to store views.
[bookmark: _Toc135043093]
The recipe also adds the following XML entry for the module to the profile catalog of the application. This means that the Composite UI Application Block will load the module at application initialization time.
XML
<Modules>
 <ModuleInfo AssemblyFile="ShippingModule.dll" />
</Modules>
Task 2. Add the launch point for the module
In this task you will add code in the module that updates the user interface of the shell. The module adds a button to the launch bar to expose functionality in the shipping module to the user.
Background: UI Extension Sites
Most Windows-based applications use common user interface elements throughout an application. The Composite UI Application supports the development of shared UIElements by shell developers that module developers can access. For example, menus, toolbars, status bars, progress bars, sidebars, action panes, the notification tray, and so on. Shell developers are responsible for the creation of these components, and module developers can create instances of the component and access their properties. To allow modules to extend a shell user interface element, shell developers register the shell element as a UIExtensionSite. (A UIExtensionSite is identified by a string.) After a UIExtensionSite is registered, other parts of the application can access and extend that UIExtensionSite.
After a module is loaded, it can add elements to the shell's UI Extension Sites. For example, a module can add menu items to the shell's MenuStrip to expose the module's features. If the entry for that module is removed from the catalog, the module will not be loaded when the application starts. The application will continue to function, but the menu items for that module will not appear. Figure 4 illustrates a module that adds menu items to the shell MenuStrip.
[image: C:\DepotsRTM\SmartClientFactory\Labs\CS\Developer\02 Creating a Shipping Module\instructions\images\Lab02-Ex01-UpdateShell.png]
[bookmark: _Ref142370357]Figure 4
Menu items added by module
Procedure
The first step is to add a string constant for the title and an icon to the module.
In Solution Explorer, right-click the ShippingModule project and then click Properties.
Click the Resources tab.
Click This project does not contain a default resources file. Click here to create one. A resources file will be created in the Properties folder of the module.
Add a new string constant named ModuleTitle and set its value to Ship Order.
[image: C:\DepotsRTM\SmartClientFactory\Labs\CS\Developer\02 Creating a Shipping Module\instructions\images\Lab02-Ex02-Resources.png]
Figure 5
ModuleTitle string resource
Click the Add Resource drop-down list box and then click Add Existing File.
Browse to the Assets\icons folder, click ShippingIcon.bmp, and then click Open.
[image: C:\DepotsRTM\SmartClientFactory\Labs\CS\Developer\02 Creating a Shipping Module\instructions\images\Lab02-Ex02-Icon.png]
Figure 6
Shipping module icon in the resource editor
Click Save.

Next you will add a ToolStripButton with module’s icon to the shell’s ToolStrip. You do this by adding a new ToolStripButton to the LaunchBar Extension Site.
Open the file ModuleController.cs in the ShippingModule project and add the following using statements before the class signature:
C#
using System.Drawing;
using AdventureWorks.ShippingModule.Constants;
Replace the ExtendToolStrip method with the following code:
C#
private void ExtendToolStrip()
{
AddLaunchBarButton(CommandNames.ShipOrder,Properties.Resources.ShippingIcon, Properties.Resources.ModuleTitle);
}

After the module is loaded, the Run method of the ModuleController class is invoked. The Smart Client Software Factory generates code in the Run method that calls the ExtendToolStrip method. You will use this method to add the launch point for the module to the shell.
Create a method that creates a new ToolStripButton with the specified icon and text and adds it to the shell’s launch bar. To do this, paste the following code below the ExtendToolStrip method:
C#
private void AddLaunchBarButton(string commandName, Image shippingIcon, string shipOrderText)
{
 ToolStripButton element = new ToolStripButton();
 element.TextImageRelation = TextImageRelation.ImageAboveText;
 element.DisplayStyle = ToolStripItemDisplayStyle.ImageAndText;
 element.ImageScaling = ToolStripItemImageScaling.None;
 element.Image = shippingIcon;
 element.Text = shipOrderText;
 element.ToolTipText = shipOrderText;

WorkItem.UIExtensionSites[Constants.UIExtensionSiteNames.LaunchBar].Add(element);
}

This code creates a new ToolStripButton and sets some visual properties (TextImageRelation, DisplayStyle, and ImageScaling.) It also sets the module’s icon as the button’s image and defines the Text and ToolTipText property values.
Finally, it adds the button to the LaunchBar extension site of the WorkItem. (In Lab 1 you added code to the AfterShellCreated method of the ShellApplication class to register the LaunchBar extension site.)

[bookmark: _Toc135043094]Task 3. Associate a command and command handler with the launch bar icon
Applications will often contain more than one control that invokes the same method. For example, a menu item and toolbar item may both run the OpenFile method. The Composite UI Application Block uses the concept of commands to enable you to write one event handler that is associated with more than one UIElement, and associate one UIElement with multiple command handlers.
In this task, you will add code to display a view in the shell when the user clicks on the ShippingModule button.
Add the following constant declaration to the CommandNames.cs file. This file is located in the Constants folder of the ShippingModule project:
C#
public const string ShipOrder = "ShipOrder";

Add the code to associate the Click event of the ToolStripButton with the ShipOrder command. To do this, add the following code to the end of the AddLaunchBarButton method in the ModuleController class:
C#
WorkItem.Commands[commandName].AddInvoker(element, "Click");
When this code executes, the Composite UI Application Block registers the command with the “Click” event. This means that when a user clicks on the ToolStripButton, the Composite UI Application Block calls methods that are registered as command handlers for the ShipOrder command (you will register a command handler in the next step.)
The full AddLaunchBarButton method should appear as follows.
C#
private void AddLaunchBarButton(string commandName, Image shippingIcon, string shipOrderText)
{
 ToolStripButton element = new ToolStripButton();
 element.TextImageRelation = TextImageRelation.ImageAboveText;
 element.DisplayStyle = ToolStripItemDisplayStyle.ImageAndText;
 element.ImageScaling = ToolStripItemImageScaling.None;
 element.Image = shippingIcon;
 element.Text = shipOrderText;
 element.ToolTipText = shipOrderText;

WorkItem.UIExtensionSites[Constants.UIExtensionSiteNames.LaunchBar].Add(element);
WorkItem.Commands[commandName].AddInvoker(element, "Click");
}

To add a command handler for the ShipOrder command, paste the following code into the ModuleController class:
C#
[CommandHandler(CommandNames.ShipOrder)]
public void OnShowOrder(object sender, EventArgs e)
{
 MessageBox.Show("Ship Order invoked");
}
[bookmark: _Toc133925042]The CommandHandler attribute indicates to the Composite UI Application Block that this method is to be invoked whenever the ShipOrder command is executed. The code in this method shows a message indicating that the user has invoked the command. In the next lab, you will update the code to display a view.

[bookmark: _Toc135043095]Task 4. Compile and run the solution
In this task you will verify that you correctly added the module to the solution and that the module can be launched from the Shell’s launch bar.
Build and run the application.
You will see a form with the ShippingModule button in the ToolStrip located on the left. Click the button to simulate the module being shown. In the next lab, you will implement and display a view.
[image:]
Figure 7
Module button displayed in shell form
Close the application.

[bookmark: _Toc135043096]Task 5. Reflection
You can use the Smart Client Software Factory at different times in the application development life cycle. In this exercise, you learned how to add a module to your application. This is an activity that is typically repeated during the course of developing your application. In the subsequent exercises, you will use additional recipes to further extend your application.
The code generated by the Add Business Module recipe requires that the solution has code constructs produced by the Smart Client Application template. For example, the generated module project includes a reference to the Infrastructure.Interface project in the same solution. In the next exercise you will modify the module’s code to use elements in the Infrastructure.Interface project.
Exercise 2: Writing reusable code for module controllers
The launch bar in the shell is a UI extension site where modules can add ToolStripButtons. In the previous exercise, you created a method in the ShippingModule module with the logic to add a ToolStripButton to the launch bar. If you create a second module and want to add a ToolStripButton to the shell for that module, you must duplicate the AddLaunchBarButton method in that module. In this exercise, you will update the WorkItemController base class to expose reusable code for adding module launch points to the shell. You will then update the ModuleController class of the ShippingModule to consume its functionality.
[bookmark: _Toc135043098]Task 1. Update the WorkItemController base class
Open the file WorkItemController.cs located in the root of the Infrastructure.Interface project.
Add the following using statements:
C#
using System.Drawing;
using AdventureWorks.Infrastructure.Interface.Constants;
Paste the following code in the class body:
C#
protected void RegisterLaunchPoint(string text, Image icon, string commandName)
{
 ToolStripButton button = new ToolStripButton();
 button.TextImageRelation = TextImageRelation.ImageAboveText;
 button.DisplayStyle = ToolStripItemDisplayStyle.ImageAndText;
 button.ImageScaling = ToolStripItemImageScaling.None;
 button.Image = icon;
 button.Text = text;
 button.ToolTipText = text;

 WorkItem.Commands[commandName].AddInvoker(button, "Click");
 WorkItem.UIExtensionSites[UIExtensionSiteNames.LaunchBar].Add(button);
}
This method is nearly the same as AddLaunchBarButton that you created in the previous exercise.
The RegisterLaunchPoint method requires the containing project to have a reference to the System.Drawing assembly. To add it, in Solution Explorer right-click the Infrastructure.Interface project and select Add Reference. In the .NET tab, select the System.Drawing assembly and click OK.

Task 2. Refactor the Shipping Module
In this task, you will perform changes to the shipping module to enable you to reuse the piece of code you added in the previous task and to follow the suggested design for this solution.
Open the ModuleController.cs file in the ShippingModule project.
Remove the definition of the AddLaunchBarButton method.
Replace the ExtendToolStrip method with the following code:
C#
private void ExtendToolStrip()
{
 RegisterLaunchPoint(Properties.Resources.ModuleTitle, Properties.Resources.ShippingIcon, CommandNames.ShipOrder);
}
This method now uses the base class method RegisterLaunchPoint to add the ToolStripButton to the launch bar of the shell.
Remove the following using statement you added in previous exercise, you need it no longer:
C#
using System.Drawing;	
[bookmark: _Toc135043100]
Task 3. Compile and run the solution
In this task you will verify that you perform the refactoring correctly.
Build and run the application.
You will see a form with the ShippingModule button in the ToolStrip located on the left. Click the button to simulate the module being shown. In the next lab, you will implement a view.
[image:]
Figure 8
Message displayed from module command handler
Close the application.

To check the finished solution open the solution file CS\Developer\02-CreatingBusinessModule \AdventureWorksCycles.sln.

17
Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced for any purpose without express written permission from the Microsoft Corporation.
image2.png
- L Source

- (4 Infrastructure
©- (3 shippingModule
24 Propertes

(= References
3 Constants
O Sevices |
3 Views

@ Modulecs

) ModuleController.cs
o "

Module Controller

Contains methods to customize
the behavior of the module on
start up

Module Initialization Class
The Load method of this
class is called on start up

Constants Folder
Define module-specific
fentifiers for your
commands, event topics,
Ulextensionsites, and
WorkSpaces

Services Folder
Store the implementation of
business services

Views Folder
Store the implementation of
views and presenters

image3.png
| enu toms rom
Ul Exension Site modue appear in shall

(StatusStrip)

(MenuSiip)

The moduie adds menu | -
tems tothe shelrs
meny extension site

7

=

\

CAB loadss modul
istad in module catalog

image4.png
Applcaton @dstrngs ~) AddResource + X Remove Resource |] -

Name. = Value ‘Comment

image5.png
limages - 1) AddResource + ¢ e e fesource

image6.png
icon loaded into
Shell by
SippingModule

image7.png

image1.png
Organizational Teams

Development eams.
‘Shellinerface (eams. work Indspendently on
dotormine layou, skins, familar systoms.

and menus

Operations teams
deploy indepentent
moduies

&

Reusable

Consumer
Loans

User intertace nfrastuciure

(logging, securty,
etc)

Developer Compentencies

