Smart Client Software Factory Demo

Application

Demo Script

= ShellForm
File Dump Workltem Show News

|| Today News |

Some text some text, some test
Some text some text. som

| Change SmartParinfo | | Close View Programatically

Key Technologies:

The following technologies are utilized within this demo script:

The goal of this demo script is to help presenters
give a presentation that illustrates the main
aspects of SC-SF such as Workltems, Commands,
EventBroker, Services, Workspaces and the
Dependency Injection pattern.

This demo stript provides step-by-step instructions

to create a SC-SF application. The application

consists of two Business Modules:

e Notifications module: this module populates
the Main Menu Strip of the Shell with two
items and adds them as invokers of the
DumpWorkItem and ShowNews commands
respectively. It also adds two views to the
Shell.

e Stocks module: this module shows BuyStock
and Reports SmartParts in the the Shell.

The Shell is made up of two Workspaces: n

OutlookBarWorkspace (the one in the right) and a

DockPanelWorkspace (the one in the left). Both

Workspaces are available in SCSF Contrib web site.

Technology / Product Version

1. Visual Studio 2005 RTM

2. .NET Framework 2.0

3. Smart Client Software Factory 2.0 — May 2007
4. SCSFContrib.CompositeUl.WinForms VNext

extensions

Before starting

Create a new folder named temp in the root directory “C:\”. In that folder, the DemoApp will place its log file.

http://www.codeplex.com/SCSFContrib

Step-by-step Walkthrough

Estimated time to complete the demo script: 30 minutes.

Use the guidance package to create a new Smart Client Solution

Action

1. InVisual Studio, point to New
on the File menu, and then
click Project.

2. Inthe New Project dialog box,
expand the Guidance
Packages node. Click the
Smart Client Development
May 2007 project type.

3. Inthe Templates window,
click Smart Client Application
(c#).

4. Change the Name to
DemoApp.

5. (Optional) Change the
location for the solution to
C:\Projects\DemoApp (this
path will be used throughout
the whole script).

6. Click OK.

e Use the guidance package to
create a new Smart Client
Solution

Screenshot

New Project

Project types: Templates:

Business Inteligence Projects
Visual Basic
= visual C#
- Visual 1
Distributed System Solutions
[Other Project Types
=) Guidance Packages
Application Block Software Factor
[Smart Client Development May 2007
Guidance Package Development
- Test Projects

visual Studio installed templates

Smart Client Application (C#)

| —] [

29 Smart Client Application (Visual Basic)

Creates a smart client application that uses CAB and Enterprise Library

Name: | Demoapp

Location: | CiiProjects.

Solution Marme; [Demoapp

¥ | Greate directory For soltion

=] eouse..

I

7. Enter the location of the
Composite Ul Application
Block, Enterprise Library, and
the offline application blocks
assemblies. (The wizard sets
the default location to the Lib
subfolder of the folder where
you installed the software
factory.)

8. Enter DemoWorkshop as the
Root namespace for your
application. This value appears
as the first part of every
namespace in the generated
solution.

9. Unselect the option Create a
separate module to define
the layout for the shell. In this
application, you will not use a
separate module to define the
layout for the shell. Instead,
you will define the layout in a
view within the Shell project.

10. Unselect the Allow solution to
host WPF SmartParts check
box. In this application you
will develop Windows Forms

e The Smart Client Application
template references the
CreateSolution recipe. The
Guidance Automation
Extensions calls the
CreateSolution recipe when
you unfold the template. The
CreateSolution recipe starts a
wizard to gather information
that it uses to customize the
generated source code

new Smart Chient Solution

198 s skt

JCi\Program Fiesiicrosolt Smart Ohent Factor/AlbL

Root parmespace:
woWerkshoo|
Requred applcstion block gssembles

I Creste separate moduk to define the lapout for the shel
T Albow solution to hest WPF SnartParts
W show documeckation after redpe conletes

Sotion Ereview.
= 2 souce
B L% Infrastructure

91 (@ rfrastructure Ineface

%1 1g] Infrastructure Liorary

SmartParts; therefore you do
not need support for WPF
SmartParts.

11. Select the Show
documentation after recipe
completes check box. You will
see after the recipe completes
a summary of the recipe
actions and suggested next
steps.

12. Click Finish. The recipe unfolds
the Smart Client Solution
template.

Add SCSFContrib binaries

Action

Screenshot

1. Go tothe SCSFContrib project * SCSFContrib is a community-

. . @@ C:\Projects',DemoApp'Lib
page: developed library of extensions S i e [&
° H Back v) J Search | Folders | & (: -
to the patterns & practices Ouik -0 |/ Boxvi@
http://www.codeplex.com/sc : agiress [cproctsipemotieplLb B
X Smart Client Software Factory. Name T see[e [osto Hodhed [attriutes |
Sfco ntri b . . gmwcmmft.l’m(tkes‘Cnmpnyteul.d\l 186 KB Application Extension 16{05{2007 06:05 p.m. A
® ? Microsoft. Practices. CompositeUT WinForms. dil 74KB Application Extension 16/05/2007 06:05 p.m. A
2 | n t h e sou rce cod e t a b We are go | ng tO use th e %] Microsoft.Practices. CompositeUL WPF. dl 70KB Application Extension 16/05{2007 06:05 p.m. A
* . . . %] Microsoft.Practices. EnterpriseLibrary.Common.di 158K Application Extension 16/05/2007 05:20 p.m. A
t for WinF th
d | d th | t C h k | eX e n s I o n S 0 r I n o r m S I n e > | Microsoft. Practices.EnterpriseLibrary.Data.dll 90KB Application Extension 16/05{2007 05:20 p.m. A
ownloa €las eck-In . . % Microsoft.Practices EnterpriseLibrary.Data. SqlCe.dl 34K Application Extension 16/05/2007 05:20 p.m. A
licat
. . a |cation. | %) Microsoft. Practices.EnterpriseLibrary.ExceptionHandiing.dl 78KB Application Extension 16/05/2007 05:20 p.m. A
file that contains the source PP SMicrosct rac j jontinding loogng. i KB Applcation Extension 16/05(2007 0520 pn.
. \‘_‘ Microsoft.Practices EnterpriseLibrary.Logging.dll 214KB Application Extension 16/05/2007 05:20 p.m. &
code of the project. 2] Microsoft Practices.ObjectBuider.di 63KB Applcation Extension 16/05/2007 05:20 pum. A
;: Microsoft.Practices. SmartClient. ConnectionMonitor . dil 54KB Application Extension 16/05/2007 06:05 p.m. A
%] Microsoft Practices. SmartClient. DisconnectedAgent.dll S4KB Application Extension 16/05/2007 06:05 p.m. &
3 . EXt ra Ct th e CO n te nt fro m t h e C Microsoft. Practices. SmartClient EndpointCatalog.dil 34KB Application Extension 16/05/2007 06:05 p.m. A
. . . ﬂ iseLibrary.dil 46 KB Application Extension 16/05/2007 06:05 p.m. A
.zip and compile the project 445 appication xtersion 15{10/2007 0204 b, 4
. . 408KE Application Extension 04/11/2007 10:23 a.m. A
Trunk\src\Extensions\WinFor

ms\SCSFContrib.CompositeUl
.WinForms\SCSFContrib.Com
positeUl.WinForms.csproj.

4. Copy the
SCSFContrib.CompositeUL. Wi
nForms.dll and
WeifenLuo.WinFormsUIl.Dock
ing.dll assemblies to the Lib
folder of your application
(C:\Projects\DemoApp\Lib).

http://www.codeplex.com/scsfcontrib
http://www.codeplex.com/scsfcontrib

5. In Solution Explorer, right-click e Add references to the
the Shell project and select SCSFContrib.CompositeUL.Win 2x
Add Reference.... In the Forms and MET | com | Projects Browse | Recent |
Browse tab, go to 'Fhe .le WelfenLuo.Wl'nFcfrmsUI.Dock| Lookie [L Tlor o
folder of your application ng.dll assemblies in the Shell
. . . Eb] Microsoft.Practices.EnterpriseLibrary.Logging.dil
(C:\Projects\DemoApp\Lib) project to be able to use the (%) Microsoft Practices.ObjectBuider.dI
and select DockPaneIWorkspace and the L%jMicrosoft.Practices.SmartClient.ConnectionMonitor.dII
. . . _@ Microsoft.Practices. SmartClient. Disconnectedagent.dll
SCSFContrlb.Comp05|teUI.W| OUtIOOkBarworkspace- @Microsoft.Practices.SmartClient.EndpointCatang.dII
nForms.dII, icrosoft.Practices. SmartClient.EnterpriseLibrary.dil
WeifenLuo.WinFormsUIl.Dock
mg.dll. |
6. Click OK. :
File hame: I“SCS FContrib.CompositeUl. WinForms.dll" "weifenLuo.WinForms j
Files of type: |Componenl Files [*.dIl;".tb;" olb;". ocx;" exe;". manifest) :I
OK I Cancel |
Customizing the Shell
Action Script Screenshot
_ e Add the DockPanelWorkspace
1. Double-click in ShellForm.cs P 20
; . and the OutlookBarWorkspace
file on the Shell project to MaintenanceTasks | SSISDataFlowltems | 5515 Control Flow Items
. . tO the TOOlbOX. JNET Framework Components COM Components Activities
open the View Designer. This all to d g
° IS allows you to drag an Hame [Namespace [Assembly Name [Directory 4
2. Open the Toolbox. drop these ZOHtI‘OlS g AccessDataSource System.Web,ULWebControls System.Web (2.0.0.0) Gmys-s:]
. H . O Account Microsoft. AnalysisServices Microsoft.AnalysisServi... Global Ass.
3‘ nght-CIICk the TOOIbOX and O ActionsPane Microsoft.Office. Tools Microsoft.Office.Tools.... Global Ass
O Activity System.Workflow.Componentt... System.Workflow.Com... Global Ass
SeIECt Choose Items' In the O addattributeaction Microsoft.Practices.RecipeFram... Microsoft.Practices.Rec... C:\Prograi
_NET Framework COmponents DAddCode.FvomTempla... M?crosuft.Practi:es.Rec?peFram... M?crosuft.Pract?tes.Rec... C:\Progral
O addConfigurationSect... Microsoft.Practices.RecipeFram... Microsoft.Practices.Rec... C:\Prograi
tab Click on Browse and Enddcustomnction Microsoft.Practices.RecipeFram... Microsoft.Practices.Rec... C:\Progral
. . AddEventAction Microsoft.Practices.RecipeFram... Microsoft.Practices.Rec... C:\Prograi v
navigate to the Lib folder of d | _.r'
your application. Select the Eiter: | dear
. . . —AccessD
SCSFCOntrIb.Com pOSIteU I .Wl [’ Language: Invariant Language (Invariant Country)
nForms.dll assembly. Mo 2 0.0
4. Click OK.
5. Select the Left and Right e Change the Shell layout. Put an

DeckWorkspaces and delete
them.

6. Dragan
OutlookBarWorkspace to the
left panel of the
SplitContainer.

7. Setits Dock property to Fill
and change its Name to
_leftWorkspace.

8. Drag a DockPanelWorkspace
to the right panel of the
SplitContainer.

9. Setits Dock and
DocumentStyle properties to

OutlookBarWorkspace on the
left and a
DockPanelWorkspace on the
right.

ShellForm.cs [Design] |

8 shell Form i

Fle

FIEEEST—

=loix|

Fill and DockingWindow
respectively and change its
Name to _rightWorkspace.

Add the LoggingService global service

Create the ILoggingService interface

Action Script Screenshot
. S . e Create an interface for the
1. Right-click in the Services logei . 21
ogging service. .
folder of L ggt gth interface in th Templates: i
[] ocate e Interrace In e Yisual Studio installed templates -
I nfra St ru Ctu re. I nte rface I nfrastru Ct ure I nte rface [ZFlow Document (WPF) ’ C-Page (WPF) - PageFunction (WPF)
project and point to Add -> . S . 5’222"’“’”‘"“"5" R o e
project so that it is available for = ustom Cotrol (WPP) SWCE Senvce Fwidons Forn
New Item.... | | d | [User Control 13 Web Configuration File A Custom Cantrol
. all moaules. “H)inherited Form Inherited User Control web Custom Control
2. In the Add New Item d Ialog Scnmpnnent Class §ESQL Database goataset
Ej XML File 2] XML Schema XSLT File
box, select Interface and L] page 35l St Qrecre
. R g Bimap Fie [y Cursor File & Report)
enter ILoggingService.cs as i el s
th e N ame Of t h e fl I e.] 3 Windows Script Host &) Assembly Information File [Application Configuration File =
An empty interface definition
Mame: [1LoggingServicelcs

3. Open the ILoggingService.cs file created in the previous step.

4. Replace the interface definition with the following:

Ct
public interface ILoggingService
{
void Log(string message);
}

Implement the service
Action Script Screenshot

e C(Create the class that

1. Create a Services folder in the . .
represents the logging service.

Infrastructure.Module
project.

2. Right-click the Services folder
of the Infrastructure.Module
project and point to Add ->
Class....

3. Inthe Add New Item dialog
box, select Class and enter
LoggingService.cs as the
Name of the file.

Add New Item - Infrastructure.Library

Templates:

Yisual Studio installed templates

2 Flow Document (WPF)
[-ResourceDictionary (WPF)
&) Class

1= Custom Control (WPF)
(3] User Control
{]Inherited Form

3] Component Class

<] XML File

9] HTML Page

@ Bitmap File

| Crystal Report

B Installer Class

5 Windows Script Host

[-Page (WPF)

[nUser Control (WPF)

3 Interface

$WCF Service

3 Web Configuration File
[Inherited User Control
| J 5QL Database

8] %ML Schema

A)Style Shest

Iy |Cursor File

0 Teon File

3} Script File

< Assembly Information File

B

(- PageFunction (WPF)
G2 Window (WPF)

] Code Fie
[:]windows Form

| Custom Control

7 web Custom Control
|2/Dataset

Bt'%SLT File

=) TextFile

5] Report

&) Windows Service
3] vBScript File

2 Application Configuration File |

An empty class definiton

Name: [LoagingService.cs|

coc

4. Open the LogginService.cs file created in the previous step.
5. Add the following using statements at the top of the file:

C#

using DemoWorkshop.Infrastructure.Interface.Services;
using Microsoft.Practices.CompositeUI;
using System.IO;

6. Replace the class definition with the following:

C#

[Service(typeof(ILoggingService))]
public class LoggingService : ILoggingService

{

#region ILoggingService Members

public void Log(string message)

{

File.AppendAllText("C:\\temp\\log.txt", message);
}
#endregion

}

The [Service] attribute indicates to ObjectBuilder that it has to register the logging service in the RootWorkltem. This service will

be global and available to all modules.

Add Notifications module
Action Script

Screenshot

In Solution Explorer, right-click
the Source solution folder,
point to Smart Client
Software Factory, and then
click Add Business Module
(C#). The Add New Project
dialog box appears with the
Add Business Module (C#)
template selected.

Enter Notifications as the

Add the Notifications Business
Module.

Modules are distinct
deployment units of a
Composite Ul Application
Block application. You use
modules to encapsulate a set
of concerns of your application
and deploy them to different
users or applications.

A Business Module has at least

20

Project types: Templates:

Business Inteligence Projects visual Studio installed templates
(- Visual Basic
(- Visual C# ule (C#,
(- Visual J# g Module
(- Other Project Types
(=) Guidance Packages

[Smart Client Development May 2007
[Test Projects

))Add Business Madule (E)
(c#) (2] dd Foundational Module (VB)

| —

| Creates a CAB module for business logic and components.

Name: [Notifications

Name and set the Location to Location: [CPropetsibemoan 5] _sowse.
the Source folder of the one Workltem (specifically, a B |
solution. ControlledWorkltem) and
Click OK. contains business logic

elements. Typically, it includes

some combination of services,

views, presenters, and business

entities.
The guidance package displays The guidance package.wnl dd Business Module x|
the Add Business Module generate a new class library j ‘
wizard. project named Notifications. i)g ddBusness Hodule
Unselect the option Create an The Module class derives from osnmsttoddepoeries N

the CAB class Modulelnit. CAB Pemovarson itz e

interface library for this
module. If you select this
option, the recipe will create
an additional project to
contain the elements that
provide the public interface to
the assembly.

Unselect the option Create a
unit test project for this
module. If you select this
option, the recipe will create a
test project for the module
with test classes for your
module components.

Select the option Show
documentation after recipe
completes to see a summary
of the recipe actions and
suggested next steps after the
recipe completes.

Click Finish.

calls the Load method of this
class on startup. The Load
method contains code to
create and run a new
Workltem. This Workltem is
the module’s main Workltem.
The ModuleController class
contains methods that you can
modify to customize the
behavior of the module on
startup. You can add services
or display user-interface items.
The project also contains the
following folders:

The Constants folder contains
four classes named
CommandNames,
EventTopicNames,
UlExtensionSiteNames, and
WorkspaceNames. You can
modify these classes to define
module-specific identifiers for
your commands, event topics,
UlExtensionSites, and
Workspaces.

The Services folder, where you
can store the implementation
of business services.

The Views folder, where you

-5 Notifications

(-3 Constants
I™ Create an interface library For this module &8 Services

[~ Options

I Create a unit test project for this module 1 Views
4] Module.cs
v
| i 4] ModuleContraller.cs

oo et > |[CEmsh | concel

Solution Explorer - Infrastruc. ..

iz |
_; Solution 'DemoApp’ (S projects)
= L Source
R I\ rastructure
= (58 Notifications
- =d| Properties
#- 9] References
- [Constants
o | Services
f | Views
] Module.cs
“#] ModuleController.cs

can store views.

9. Right-click the Notifications
project and point to Add
Reference.... In the Browse
tab, go to the Lib folder of
your application
(C:\Projects\DemoApp\Lib)
and select
SCSFContrib.CompositeUL. Wi
nForms.dll.

10. Click OK.

e Add areference to the
SCSFContrib.CompositeUl.Win
Forms.dll assembly.

e This allows you to use the
DockPanelSmartPartinfo and
the OutlookBarSmartPartinfo
and change some features of
your views.

Solution Explorer - Solution 'DemoApp’ (6 projects) > 3 X
‘= @ E

g Solution 'Demodpp’ (6 projects)

[% Source

" Infrastructure

= L5 Notifications
~ =d| Properties
5 | References
-« Infrastructure. Interface
- 3 Microsoft.Practices, CompositelJl
« «+3 Microsoft.Practices. CompositeUL WinForms

- i3 Microsoft.Practices. ObjectBuilder
SCSFContrib. CompositeUL \WinForms
w3 System
-« System.Data
“3 System.Drawing
-« «3 System.EnterpriseServices
-« System.\Web,Services
3 System.Windows.Forms
w23 System, Xml
- [Constants
-~ [Services
e] Views
-] Module.cs
] ModuleController.cs

- 5 Stocks

Add News view to Notifications module

Using Add View (with presenter)... recipe

Action

Script

Screenshot

In Solution Explorer, right-click
the Views folder of the
Notifications project, point to
Smart Client Software
Factory, and then click Add
View (with presenter)....

In the wizard, enter News in
the View Name field and
select the Show
documentation after recipe
completes option to see a
summary of the recipe actions
and suggested next steps after
the recipe completes. If
Create a folder for the view is
selected, the recipe will create
a folder and place the new
items in this folder.

Click Finish.

The recipe generates:

A view interface. The presenter
class uses this interface to
communicate with the view.
You will modify this interface.
A view implementation user
control. This class derives from
UserControl and has the
[SmartPart] attribute. The user
control also implements the
view interface and contains a
reference to its presenter. You
will modify this class to call the
presenter for user-interface
actions that affect other views
or business logic.

A presenter class for the view.
This class extends the
Presenter base class defined in
Infrastructure.Interface
project and contains the
business logic for the view. You
will modify this class to update
the view for your business
logic.

[Add View (with presenter)...

—

:‘/{g Add View with Presenter

View name:

21|

I™ Create a folder for the view

IV Show dacumentation after recipe completes

[~ Solution Preview

B . Source
=1-{F Notifications
£ Views
A INews.cs
3 News.cs

4] NewsPresenter.cs

et > [[Cmen |

Cancel

Customizing News view

1.

In the Views folder of the Notifications project, open the INews.cs file.

Paste the following method declaration inside the interface definition:

CH

void ShowNews(string n);

This method will be called from the presenter whenever news has to be displayed to the user.

In the Views folder of the Notifications project, open the NewsPresenter.cs file.

Add the following using statements at the top of the file.

C#

using DemoWorkshop.Infrastructure.Interface.Services;

using Microsoft.Practices.CompositeUI.SmartParts;

Replace the OnViewReady method with the following code.

CH#

public override void OnViewReady()

{

string[] news = { "Some text, some text, some text", "Some text,

foreach (string n in news)

some text, some text" };

10.

11.

12.

13.

14.

View.ShowNews(n);

}
base.OnViewReady();

}

This method will be called when the view is initialized and will populate the view with news.

Add the following two methods to the body of the NewsPresenter class.

Ct

private void DisposeView(object smartpart, WorkItem workItem)

{
if (smartpart is IDisposable) ((IDisposable)smartpart).Dispose();
workItem.SmartParts.Remove(smartpart);

}

public void ChangeTitle()

{
IWorkspaceLocatorService locator = WorkItem.Services.Get<IWorkspacelLocatorService>();
IWorkspace wks = locator.FindContainingWorkspace(WorkItem, View);
wks.ApplySmartPartInfo(View, new SmartPartInfo("New Title", ""));

}

The ChangeTitle method locates the workspace where the view is showed and applies a new SmartPartinfo with a new title.
The DisposeView method disposes the current view if it is disposable.

Add the following line of code at the bottom of the OnCloseView method:

C#
DisposeView(View, WorkItem);

Double-click in the News.cs file in the Views folder of the Notifications project. This will open the Designer.
Set the Size property of control to 349, 200.
Drag a Label to the top of the view. Set its Name to NewsLabel and erase the text in the Text property.

Drag two Buttons to the view surface. Set their Text properties to “Change SmartPartinfo” and “Close View Programatically”
respectively. Adjust the size of the buttons to see the text on them.

Double-click on the “Change SmartPartinfo” button to auto-generate the handler of Click event.
Add the following code into the body of the handler.

Ch
_presenter.ChangeTitle();

Go back to the Design of the News view and double-click on the “Close View Programatically” button to auto-generate the
handler of Click event.

15. Add the following code into the body of the method.

C#

_presenter.0OnCloseView();

16. Replace the head of the News class with the following:

C#

public partial class News : UserControl, INews, ISmartPartInfoProvider

In this way, the News class implements ISmartPartinfoProvider.
17. Implement the interfaces INews and ISmartPartinfoProvider. To do this past the following code in the News class body.

C#

#tregion INews Members

public void ShowNews(string n)

{

NewsLabel.Text += n + Environment.NewlLine;
}
#endregion

#region ISmartPartInfoProvider Members

public ISmartPartInfo GetSmartPartInfo(Type smartPartInfoType)

{
ISmartPartInfo spi = (ISmartPartInfo)Activator.CreateInstance(smartPartInfoType);
spi.Title = "Today News";
return spi;

}

#tendregion

Add Alerts view to Notifications module

Using Add View (with presenter)... recipe
Action Script Screenshot

1. In Solution Explorer, right-click e |IDEM News view
the Views folder of the
Notifications project, point to
Smart Client Software
Factory, and then click Add
View (with presenter)....

2. Inthe wizard launched, enter
Alerts in the View Name field
and select the Show
documentation after recipe
completes option to see a
summary of the recipe actions
and suggested next steps after
the recipe completes. If
Create a folder for the view is
selected, the recipe will create
a folder and place the new
items in this folder.

3. Click Finish.

Add Yiew (with presenter)...

.
i‘/{g Add View with Presenter

2lx|

[aterts]
I™ Create a folder for the view

IV Show documentation after recipe completes

- Solution Preview
B .. Source
=] Notifications
£ Views
2] Ialerts.cs
2] Alerts.cs
4] AlertsPresenter.cs

o> |[CEosh | concel |

Customizing Alerts view

1. Open the EventTopicNames.cs file located in the Constants folder of Infrastructure.Interface project.

2. Paste the following code in the body of the EventTopicNames class:

C#
public const string NewStockBuy = "NewStockBuy";

This event topic name will be used in the Notifications and Stocks modules to notify when a new stock is bought.

3. Inthe Views folder of the Notifications project, open the IAlerts.cs file.
4. Paste the following code inside the interface definition:

CH
void ShowAlerts(string p);

This method will be called from the presenter whenever a new alert has to be displayed to the user.

5. Inthe Views folder of the Notifications project, open the AlertsPresenter.cs file.

6. Add the following using statements at the top of the file:

CH#

using Microsoft.Practices.CompositeUI.EventBroker;
using DemoWorkshop.Notifications.Constants;

7. Paste the following code in the body of AlertsPresenter class.

C#

[EventSubscription(EventTopicNames.NewStockBuy, ThreadOption.UserInterface)]

10.

11.

12.

13.

14.

15.

public void OnNewStockBuy(object sender, EventArgs<string> eventArgs)

{
View.ShowAlerts("Alert for " + eventArgs.Data);

}

This method is an event handler for the NewStockBuy event. The [EventSubscription] attribute allows you subscribe to an event
in a loosely coupled way. In next tasks, you will publish the NewStockBuy event.

Double-click the Alerts.cs file in the Views folder of the Notifications project. This will open the Designer.
Drag two Labels to the view’s surface and put them at the top-left corner of the view (one below the other).
Set the Text property of the first label to Alerts and set also the Bold property of the Font to true.

Change the Name of the second label to AlertsLabel and erase the text in its Text property.

Right-click onto the view surface and click on View Code.

Add the following using statements at the top of the file:

C#
using SCSFContrib.CompositeUI.WinForms.SmartPartInfos;

Replace the head of the Alerts class with the following:

C#
public partial class Alerts : UserControl, IAlerts, ISmartPartInfoProvider

In this way, the Alerts class implements ISmartPartinfoProvider.
Implement the lAlerts and ISmartPartinfoProvider interfaces. To do this, paste the following code in the Alerts class body.

CH

#region IAlerts Members

public void ShowAlerts(string p)

{

AlertsLabel.Text += p + Environment.NewlLine;
}
#tendregion

#region ISmartPartInfoProvider Members

public ISmartPartInfo GetSmartPartInfo(Type smartPartInfoType)

{
ISmartPartInfo spi = (ISmartPartInfo)Activator.CreateInstance(smartPartInfoType);
spi.Title = "Alerts";
if (spi is DockPanelSmartPartInfo)

{
((DockPanelSmartPartInfo)spi).DockingType = DockingType.TaskView;

}

return spi;

#endregion

Showing News and Alerts views in the DockPanelWorkspace

1.

2.

Open the ModuleController.cs file located in the root of the Notifications project.
Add the following using statements at the top of the file:

C#

using DemoWorkshop.Notifications.Constants;
using System.Diagnostics;
using Microsoft.Practices.CompositeUI.SmartParts;

Replace the ExtendMenu method in the ModuleController class with the following one:

C#
private void ExtendMenu()
{
ToolStripMenuItem menuItem = new ToolStripMenuItem();
menultem.Text = "Dump WorkItem";
WorkItem.UIExtensionSites[UIExtensionSiteNames.MainMenu].Add<ToolStripMenuItem>(menultem);
WorkItem.Commands["DumpWorkItem"].AddInvoker(menuIltem, "Click");
ToolStripMenuItem showNewsMenuItem = new ToolStripMenultem();
showNewsMenuItem.Text = "Show News";
WorkItem.UIExtensionSites[UIExtensionSiteNames.MainMenu].Add<ToolStripMenuItem>(showNewsMen
ultem);
WorkItem.Commands["ShowNews"].AddInvoker(showNewsMenuItem, "Click");
}

In the previous code, you’ve added two button as invokers of the commands “DumpWokitem” and “ShowNews”.
Paste the following three methods inside the body of ModuleController class:

CH

[CommandHandler ("DumpWorkItem")]
public void DumpWorkItem(object sender, EventArgs e)

{
Debug.WriteLine("SmartParts Count : " + WorkItem.SmartParts.Count);

[CommandHandler ("ShowNews")]
public void ShowNews(object sender, EventArgs e)

{

ShowViewInWorkspace<News>(WorkspaceNames.RightWorkspace);

private void DisposeView(object smartpart, WorkItem workItem)

{
if (smartpart is IDisposable) ((IDisposable)smartpart).Dispose();

workItem.SmartParts.Remove(smartpart);

}

When the “DumpWorkitem” Command is raised, the DumpWorkltem method will be executed. The same occurs for the
“ShowNews” command and the ShowNews method.

5. Replace the AddViews method in the ModuleController class with the following one:
C#
private void AddViews()
{
ShowViewInWorkspace<News>(WorkspaceNames.RightWorkspace);
ShowViewInWorkspace<Alerts>(WorkspaceNames.RightWorkspace);
WorkItem.Workspaces[WorkspaceNames.RightWorkspace].SmartPartClosing += new
EventHandler<Microsoft.Practices.CompositeUI.SmartParts.WorkspaceCancelEventArgs>(delegate(obje
ct workspace, WorkspaceCancelEventArgs e)
{
DisposeView(e.SmartPart, WorkItem);
})s
}
Add Stocks module
Action Nelglels Screenshot
1. In Solution Explorer, right-click * DEM Notifications module. 2
the Source solution folder, B e _ e S
point to Smart Client E%@WWWK “ﬁ#mmtwmjmmmmm
Softwa re Factory, and then SE:::: gﬁ]m - 2] Add Foundational Module (C#) _#)Add Foundational Module (VE)
click Add Business Module B Gmd:::tpcali(ek:tg;:velupment May 2007
(c#). The Add New Project .
dialog box appears with the
Add Business Module (C#)
template selected.] —
Creates a CAB module for business logic and components.
2. Enter Stocks as the Name and INa oo
set the Location to the Source Location: [Cpropctsipemcarp T] _owse..
folder of the solution.
3. Click OK.

e |DEM Notifications module.

The guidance package displays Add Business Module (x|
the Add Business Module 83 A Businass Module
wizard.

[Co e | Modue namespace: —Solution Preview

Unselect the option Create an

. . . |Demnworl@hnp.stocks B . Source
interface library for this g | G
. I™ Create an interface library for this module rvices
mOdUIe' If YOU SeIeCt thIS ’(F Create a unit test project for this module :}jzﬁws
. . .] Module.cs
option, the recipe will create K 3] HodeCantroler.cs

an additional project to
contain the elements that
provide the public interface to
the assembly.

Unselect the option Create a
unit test project for this T R S
module. If you select this
option, the recipe will create a
test project for the module
with test classes for your Solution Explorer - Infrastruc,,, v & X
module compf)nents. Léﬁ 2 | B

Select the option Show
documentation after recipe
completes to see a summary
of the recipe actions and
suggested next steps after the
recipe completes.

Click Finish.

[J Solution 'Demodpp’ (6 projects)
= % Source
Infrastructure

= u@ Stocks
-- =d| Properties
- [« References
- [Constants
- [Services
o [Views
] Module.cs
‘..] ModuleController.cs

9. Right-click the Stocks project
and point to Add Reference....
In the Browse tab, go to the
Lib folder of your application
(C:\Projects\DemoApp\Lib)
and select
SCSFContrib.CompositeUl.Wi
nForms.dll.

10. Click OK.

Add a reference to the
SCSFContrib.CompositeUl.Win
Forms.dll assembly.

This allows you to use the
DockPanelSmartPartinfo and
the OutlookBarSmartPartinfo
and change some features of
your views.

Solution Explorer - Solution 'DemoApp’ (6 projects) >~ 3 X

2| E

‘_u Solution 'DemoApp’ (6 projects)
' “ Source

@ Motifications
= (5 Stocks
-- =d| Properties
=+ | References
<« Infrastructure.Interface
3 Microsoft.Practices.CompositelJI
-3 Microsoft.Practices.CompositelJL. WinForms
23 Microsoft.Practices, ObjectBuilder
SCSFContrib. CompositeUL \WinForms
<3 System
<3 System,.Data
A3 System.Drawing
<3 System.EnterpriseServices
23 System.Web,Services
23 System.Windows.Forms
w23 System.xXml

- [Constants

-+ [Services
- [Views

- &) Module.cs

-] ModuleController.cs

11. Right click onto the Stocks
project and point to Add ->
New Item....

12. In the Add New Item dialog
box, select the Resources File
template and change the
Name of the file to
Resources.resx, and then drag
it to the Properties folder of
the Stocks project.

Add a resources file where you
can place the view icons
showed by the
OutlookBarWorkspace.

2l
Templates: HE
[- ResourceDictionary (WPF) © User Control (WPF) o Window (WPF) |
#)Class sy Interface] Code File
1= Custom Control (WPF) SOWCF Service [=] windows Form
(3] User Control 53 Web Configuration File A Custom Control
5Inherited Form i Inherited User Control (7 Web Custom Control
&) Component Class | 5QL Database |5jDataset
[%ML File 8] ML Schema 2P ¥SLT File
o] HTHL Page A]5tyle Sheet =] Text File
g Bitmap File Ry Cursor File |5 Report
2| Crystal Repart 1) Tcon File) Windows Service
8] Installer Class £5)35cript File 3] vBScript File
5]Windows Script Host] Assembly Information File 1] Application Configuration File
1) Settings File []mo1 Parent
[£] About Box [Debugger Visualizer) Class Diagram
-
& file For storing resources.

Name: | Resources.resx

13.

14.

15.

16.

17.

Double click onto the
Resourses.resx file to open it.
Select Icons in the first
dropdown lists.

Click in the Add Existing File...
in the second dropdown list.
In the Add existing file to
resources dialog box, navigate
to the folder where you have
the icons, one for each view,
and select them. Click in
Open.

Rename the resources added
previously with the names
ReportEdit and Stocks
respectively.

BuyStock view

Reports view

Add two icons that should be
representative of each view.
You can use the following
icons:

Resources.resx

[Elicons ~] AddResource ~ X Remove Resource | B ~

1 ReportEdit!
Stocks

Add BuyStock view to Stocks module

Using Add View (with presenter)... recipe

Action

1.

3.

In Solution Explorer, right-click
the Views folder of the Stocks
project, point to Smart Client
Software Factory, and then
click Add View (with
presenter)....

In the wizard launched, enter
BuyStock in the View Name
field and select the Show
documentation after recipe
completes option to see a
summary of the recipe actions
and suggested next steps after
the recipe completes. If
Create a folder for the view is
selected, the recipe will create
a folder and place the new
items in this folder.

Click Finish.

Nelglels

IDEM News view

Screenshot

[Add View (with presenter)...

@ Add View with Presenter

21x

[Buystock
I™ Create a folder for the view

IV Show documentation after recipe completes.

) L. Source
= Stocks
B-{3 Views
] IBuyStock.cs
#] BuyStock.cs
] BuyStockPresenter

<previous | wee> | [nsh |

cancel |

Customizing the BuyStock view

1.

2.

In the Views folder of the Stocks project, open the IBuyStock.cs file.

Paste the declaration of the ShowMessage method inside the interface body:

C#

void ShowMessage(string p);

This method will be called from the presenter when a message has to be shown to the user.

3. Inthe Views folder of the Stocks project, double-click on the BuyStockPresenter.cs file.
4. Add the following using statements at the top of the file:

CH

using Microsoft.Practices.CompositeUI.EventBroker;
using DemoWorkshop.Stocks.Constants;
using DemoWorkshop.Infrastructure.Interface.Services;

5. Paste the following code inside the body of BuyStockPresenter class.

C#

[EventPublication(EventTopicNames.NewStockBuy, PublicationScope.Global)]
public event EventHandler<EventArgs<string>> NewStockBuy;

private ILoggingService _logger;

[ServiceDependency]
public ILoggingService Logger

{
get { return _logger; }
set { _logger = value; }

}

The following code publishes an event using the [EventPublication] attribute of the EventBroker system. It also injects the
logging service using the [ServiceDependency] attribute thanks to the dependency injection pattern implemented by
ObjectBuilder and CAB.

6. Paste the following methods in the BuyStockPresenter class.

Ct
public void BuyStock(string stock)
{
OnNewStockBuy(new EventArgs<string>(stock));
Logger.Log("A new stock was bought " + stock + " - ");
View.ShowMessage("The stock was succesfully bought");
}
protected virtual void OnNewStockBuy(EventArgs<string> eventArgs)
{
if (NewStockBuy != null)
{
NewStockBuy(this, eventArgs);
}
}

The BuyStock method is called by the view every time the user decides to buy. This method raises the NewStockBuy event, log
the transaction using the logging service and show a message to the user in a MessageBox.

7. Double-click the BuyStocks.cs file in the Views folder of the Stock project. This will open the Designer.

10.

11.

12.

13.

14.

15.

Change the Size of the user control to 265, 40 from the Properties view.
From left to right, drag a Label, a ComboBox and a Button to the view surface.
Set the Text property of the label to Select Stock.

Set the Anchor property of combo box to Top, Left, Right and add to its Items collection the strings MSFT, UFIDA and etc (one
per line) as you can see in the following image:

String Collection Editor 21 x|

Enter the strings in the collection {(one per line):

MSFT =]

UFID&
etc|

OK I Cancel |

A

Set the Text and Anchor properties of the button to Buy and Top, Right. Double-click on the button surface to auto-generate the
handler for Click event.

Paste the following code inside the body of the auto-generated method in the previous step:

C#

_presenter.BuyStock(comboBox1.SelectedItem as string);

Add the following using statements at the top of the BuyStock.cs file:

C#

using SCSFContrib.CompositeUI.WinForms.Workspaces;

Replace the head of the BuyStock class with the following:

C#
public partial class BuyStock : UserControl, IBuyStock, ISmartPartInfoProvider

In this way, the BuyStock class implements ISmartPartinfoProvider.

14. Implement the IBuyStock and ISmartPartinfoProvider interfaces. To do this, paste the following code in the body of the
BuyStock class:

C#
#region IBuyStock Members

public void ShowMessage(string p)

{

MessageBox.Show(p);
}
#endregion

#region ISmartPartInfoProvider Members

public ISmartPartInfo GetSmartPartInfo(Type smartPartInfoType)

{
ISmartPartInfo spi = (ISmartPartInfo)Activator.CreateInstance(smartPartInfoType);
spi.Title = "Stocks";
if (spi is OutlookBarSmartPartInfo)
{
((OutlookBarSmartPartInfo)spi).Icon = Properties.Resources.Stocks.ToBitmap();
}
return spi;
}
#endregion

Add Reports view to Stocks module

Using Add View (with presenter)... recipe
Action Script Screenshot

1. In Solution Explorer, right-click e |IDEM News view
the Views folder of the Stocks

Add View (with presenter)... i 21 x|

project, point to Smart Client gj AYA eSS sith Presentes
Software Factory, and then (TP ey rone
click Add View (with !"j";’;ﬁfdﬂeﬁmvm —
presenter).... I o e et s it B s

2. Inthe wizard launched, enter ko —
Reports in the View Name B v

field and select the Show
documentation after recipe
completes option to see a
summary of the recipe actions
and suggested next steps after
the recipe completes. If
Create a folder for the view is
selected, the recipe will create
a folder and place the new

3.

items in this folder.
Click Finish.

Customizing Reports view

1.

2.

Right-click onto the Reports.cs file and click on View Code.
Add the following using statements at the top of the file:

C#
using SCSFContrib.CompositeUI.WinForms.Workspaces;

Replace the head of the Reports class with the following:

C#
public partial class Reports : UserControl, IReports, ISmartPartInfoProvider

In this way, the Reports class implements ISmartPartinfoProvider.
Implement the ISmartPartinfoProvider interface. To do this, paste the following methods in the Reports class.

CH#

#region ISmartPartInfoProvider Members

public ISmartPartInfo GetSmartPartInfo(Type smartPartInfoType)

{
ISmartPartInfo spi = (ISmartPartInfo)Activator.CreateInstance(smartPartInfoType);
spi.Title = "Reports";
if (spi is OutlookBarSmartPartInfo)
{
((OutlookBarSmartPartInfo)spi).Icon = Properties.Resources.ReportEdit.ToBitmap();
}
return spi;
}
#tendregion

Showing BuyStock and Reports views in the OutlookBarWorkspace

1.

2.

Open the ModuleController.cs file located in the root of the Stocks project.
Add the following using statements at the top of the file:

Ctt
using DemoWorkshop.Stocks.Constants;

Replace the AddViews method in the ModuleController class with the following one:

C#

private void AddViews()
{

ShowViewInWorkspace<BuyStock>(WorkspaceNames.LeftWorkspace);

ShowViewInWorkspace<Reports>(WorkspaceNames.LeftWorkspace);

}

The previous method shows the Stocks module’s views in the OutlookBarWorkspace (the left one, in the Shell).

Compile, run and show the application

Script

Run the application.

> start Debugging [

Screenshot

Windows

D Start Without Debugging Ctrl+FS
[Attach to Process...

Cul+D, E
FiL
Fl0

Action

1. Set the Shell project as
StartUp Project.

2. Compile and Run the
Application (F5).

3. Show the application.

The application consists of two
Business Modules. Business
modules are distinct
deployment units of a
Composite Ul Application Block
application that contain
business logic elements. SCSF
allows loading modules
specified in a Profile Catalog
file. In this file, you can add
different roles for each
module.

You can see the “Dump
Workltem” and “Show News”
buttons in the Main Menu
Strip. These items are added
when CAB loads the
Notification module.

You can also see two
workspaces. An
OutlookBarWorkspace on left
sideand a
DockPanelWorkspace on right
side. Each workspace shows
views in different ways.
Workspaces are components
that encapsulate a particular
visual layout of controls and
SmartParts.

The Notification module loads
its two views in the right
workspace and the Stocks
module in the left one.

8 Shell Form

File {Dump Workltem

=iEIE=]

Today News |

Some text, some text, some text
Some text, some text, some text

Change SmartPartinfo | [Close View Programatically

|£3 stocks
i;a Reports

Alerts

.
Ready

4.

Show the right workspace and
its SmartParts.

Smartparts are data views such
as a control, a Windows Form,
or a wizard page. In the right
workspace you can see two
SmartParts: News on the left
and Alerts on the right. The
DockPanelWorkspace can
show SmartParts in two
different Docking Types:

o TaskView, like the

Alerts view.
o Document, like the
News view.

A SmartPartiInfo is a piece of
information about a SmartPart
that a workspace can use, such
as the title of the SmartPart. If
we click in the “Change
SmartPartInfo” button, the title
of the view is changed. That is
because when you press that
button, the presenter of the
view tells the
DockPanelWorkspace to apply
a new SmartPartinfo.
Click in the “Close View
Programatically” button in the
News smartpart. See how the
SmartPart is closed by its
presenter.

a5/ Shell Form

File Dump Workitem Show News

=)

[New Tite 1 - x|

Some text, some text, some text
Some text, some text, some text

- N ay
| change smartpartinfo [close View Programatically |
L J

Stocks

i‘ ‘Reports

Ready

5.

Show the left workspace and
its SmartParts.

In the left workspace you can
see an OutlookBarWorkspace.
This workspace allows you
switch the views by clicking in
the button bellow.

Also you can click in the little
arrow bellow and select the
“Show More Buttons” or
“Show Fewer Buttons” options
if you have to many buttons
and you want to hide them.

a5’ Shell Form

File Dump Workltem Show News

|| Today News - x

Alerts. 1 x

Some text, some text, some text
Some text, some text, some text

Change SmartPartinfo | [Close View Programatically

& Show Fewer Buttons

(@)

I] @ Show More Buttons

Alerts

Ready.

6.

Show the BuyStock view.

Now you can see the Reports
view but if | click in the Stocks
button you can see the
BuyStocks view

In the Buy Stock view select
one option in the combo box
(for example MSFT) and then
click in “Buy” button.

You can see a Message Box and
the text “Alert for MSFT” in the
Alerts view. This is achieved by
EventBroker. This system
allows you publish and
subscribe to events in a loosely
coupling way.

The BuyStock and Alert views
are in different modules and
they doesn’t have reference
each other.

E=EIE=]

85 Shell Form
File Dump Workltem Show News

Today News | v x

Alerts

Alert for MSFT |

MSFT + Buy
Some text, some text, some text
Some text, some text, some text

(The stock was succesfully bought

Programatically

3 stocks

i:‘ Reports

Ready

7.
8.
9.

Go to the “C:\temp” directory.
Open the “log.txt” file.
Show the application log.

Every time that the Buy button
of the BuyStock view is clicked,
the Logging Service is called,
which logs the operation in a
log file.

A Service is a supporting class
that provides functionality to
other components in a loosely
coupled way.

Services are singletons that can
be injected using the
Dependency Injection pattern
and live in the Service
collection of Workltem.

A Workltem is a run-time
container of the components
and services that are
collaborating to fulfill a use
case.

~llog bt - Notepad

File _Edit _Format_View Hels
(new stock was bought mseT]-{a new stock was bought UFIDA -]

10. Show the “Show News”
button in the Main Menu
Strip.

If the “Show News” button in
the Main Menu Strip is clicked,
a new News view appears in
the right Workspace. This is
achieved by Commands.

You can use Command to bind
an UlElement event to more
than one command handler
and a single command handler
to multiple UIElements in a
loosely coupling way.

o glll’wm
File Dump Workitem

Today News?” Today News ||

- X

=]

MSFT + Buy
Some text, some text, some text
Some text, some text, some text

Change | [Close view

(3 stocks
i;" Reports

Alerts

Alert for MSFT

Ready

11. Maximize Visual Studio.

12. Restore the DemoApp.

13. Make sure that the Output
view of Visual Studio can be
seen.

When the other button is
clicked (the “Dump Workltem”
button), you can see in the
Output view of Visual Studio
the text “SmartParts Count: 3”.
This represents the count of
Smartparts that the module’s
Workltem has (views in the left
workspace).

This also executes a Command
that can be used to debug our
application.

hell |

‘a2 Shell Form
Dump Warkltem

File

Show News

Today News) Today News

MSFT » Buy
Some text, some text, some text
Some text, some text, some text

Change | [close view

3 stocks
i;-‘ Reports

Alert for MSFT

Ready

Output
Show output from: Debug R A |xE

of type ‘Syst
s _exited with code 0 (0x0).

Summary

Now you have minimum knowledge about the main features of SCSF. You can deepen your knowledge by reading the

documentation, by doing the Hand-On-Labs and by reviewing the Quickstars and the Reference Implementation.

Useful Links
e Download SCSF

o http://www.microsoft.com/downloads/details.aspx?FamilylD=2B6A10F9-8410-4F13-AD53-

05A202FBDB63&displaylang=en

o Official documentation

o http://www.codeplex.com/smartclient/Release/ProjectReleases.aspx?Releaseld=5027

http://www.microsoft.com/downloads/details.aspx?FamilyID=2B6A10F9-8410-4F13-AD53-05A202FBDB63&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=2B6A10F9-8410-4F13-AD53-05A202FBDB63&displaylang=en
http://www.codeplex.com/smartclient/Release/ProjectReleases.aspx?ReleaseId=5027

Hand-On-Labs
o http://www.codeplex.com/smartclient/Release/ProjectReleases.aspx?Releaseld=6357

SC SF Knowledge Base
o http://www.codeplex.com/smartclient/Wiki/View.aspx?title=SCSF%20Knowledge%20Base&referringTitle=H
ome
SCSF Community Site
o http://www.codeplex.com/smartclient
SCSF Contrib
o http://www.codeplex.com/scsfcontrib

http://www.codeplex.com/smartclient/Release/ProjectReleases.aspx?ReleaseId=6357
http://www.codeplex.com/smartclient/Wiki/View.aspx?title=SCSF%20Knowledge%20Base&referringTitle=Home
http://www.codeplex.com/smartclient/Wiki/View.aspx?title=SCSF%20Knowledge%20Base&referringTitle=Home
http://www.codeplex.com/smartclient
http://www.codeplex.com/scsfcontrib

